Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highest measurement speed and flexibility due to automated ultrasonic testing

03.06.2016

The Fraunhofer Institute for Ceramic Technologies and Systems IKTS develops application-specific solutions for ultrasonic testing. The systems of PCUS® pro family range from simple manual testing to fully automated ultrasonic testing. At the World Conference on Non-Destructive Testing (WCNDT) researchers of Fraunhofer IKTS present the new development PCUS® pro Array II, which is optimized for fast automated testing in metal processing as well as in the fields of railway and automotive, power plant or wind power technology.

PCUS® pro is the ultrasonic platform developed at Fraunhofer IKTS. For years, it has been known for highest reliability, high test speed and adaptability to respective test tasks. The systems allow for non-destructive testing by conventional ultrasonic methods as well as by phased-array methods during production, maintenance or in the test laboratory.


The new development PCUS® pro Array II for particularly fast phased-array inspections with many elements.

© Fraunhofer IKTS

The ultrasonic front-end PCUS® pro Array II extends the product range by a compact and fast phased-array device with up to 128 (128:128) native channels. IKTS scientist Christian Richter points out other advantages of the system:

“By cascading multiple devices, even larger apertures can be controlled. Highest scanning rates are achieved due to the completely parallel design and the USB 3.0 interface. To ensure maximum reliability, the PCUS® pro Array II front-end is equipped with a multitude of diagnostic and self-test capabilities.“

The area of ​​application of the new test system ranges from phased-array inspections of welds, to complex test tasks with multiple array probes, such as the testing of solid axles in cargo trains, up to medical applications, such as small animal ultrasound and high-resolution brain scans. The freely configurable software and hardware combination also allows for tests with many conventional probes, for example in the inline sheet inspection.

All PCUS® pro devices developed at Fraunhofer IKTS are compact, energy-efficient and meet the relevant parts of the ultrasound standard DIN EN 12668. The modular structure allows for adaptation to the specific test task with little development effort. All front-ends are equipped with a USB interface for easy connection, also of multiple devices, to any Windows PC, laptop or tablet.

Another highlight is the PCUS® Pocket: an entire ultrasonic device for your pocket. PCUS® Pocket completes the successful PCUS® family in the age of industry 4.0. The ultrasonic test device “to go“ is controlled by smartphone or tablet but can also be easily connected to a laptop or PC via the USB port.

At booth FE57, scientists of Fraunhofer IKTS present the PCUS® systems for ultrasonic testing.

Weitere Informationen:

http://www.ikts.fraunhofer.de/en/communication/press_media/press_releases/2016_0...

Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>