Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-purity plastic parts: the search for inclusions

25.07.2016

The OPtima research project is aimed at improving the manufacture of plastic components for semiconductor machines.

Semiconductor machines and plastic parts


Semiconductor chips and the fabrication processes involved place extremely high demands on the components used in terms of accuracy, purity, material and surface quality.

©MeislitzerPräzisionstechnik

Semiconductor chips are needed to make cars safer,mobile phones smarter and consumer electronics more user-friendly. The manufacture of such semiconductors requires machines that also contain special plastic parts. And it is these parts that are critical.

This is because semiconductor chips and the fabrication processes involved place extremely high demands on the components used in terms of accuracy, purity, material and surface quality.

Inferior plastic parts have to be eliminated, cause waste and therefore also costs. What is particularly challenging here is detecting flaws and the tiniest inclusions that are no bigger than 0.25 mm². Current inspection devices may enable the geometry tolerances to be verified, but are not however capable of adequately determining the material or the type and structure of the inclusion detected.

Many components with inclusions are therefore rejected as aprecaution. This delays the fabrication process and also gives rise to high costs. It is here that is the starting point for the OPtima research work.

Analysing Processes

CTR physicist, area and project manager Christina Hirschl explains the challenge: “We aim to achieve several things in the project. Firstly, we need to systematically examine the inclusions and identify the causes. We then intend to use the results for improving the entire fabrication process in order to develop an automatic quality assurance procedure, which can be integrated in the fabrication process and comes close to achieving zero defects.”

The first step will be to use micro-analytical methods for identifying the characteristics, structure and frequency of inclusions and their causes. Drawing on the results, a demonstrator will be built that can detect all three criteria – inclusion size, structure and material – in an environment of great product variety and dynamics. To achieve this, the team is systematically examining various different approaches such as optical, spectroscopic and acoustic detectionand test methods.

Resource-efficient manufacture

All the research work and demonstrator developments should lead to an improvement in resource and production efficiency in relationto raw materials, energy, operating time and waste prevention. If everything goes according to plan, the findings and results could also be used for other sectors, such as the food or medical technology industries, which also require high-purity plastic parts.

The "OPtima" project is co-funded by the research, technology and innovation (FTI) Initiative "Production der Zukunft", promoted from the Austrian Research Promotion Agency (FFG).

PROJECT FACTS & FIGURES:

>Title: OPtima – optimized production for polymer parts in semiconductor machine manufacture
>Programme: Produktion der Zukunft
>Programme coordinator: FFG Forschungsförderungsgesellschaft
>Project lead: CTR Carinthian Tech Research AG
>Duration: 2 years (04/2016 – 03/2018)
>Partners:
Lam Research AG
Meislitzer Präzisionstechnik GmbH
Polymer Competence Center Leoben GmbH
CTR Carinthian Tech Research

Weitere Informationen:

http://www.lamresearch.com/austria
http://www.feinmechanik.at
http://www.pccl.at
http://www.ctr.at
http://www.ffg.at

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht Satellite-based Laser Measurement Technology against Climate Change
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>