Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-purity plastic parts: the search for inclusions

25.07.2016

The OPtima research project is aimed at improving the manufacture of plastic components for semiconductor machines.

Semiconductor machines and plastic parts


Semiconductor chips and the fabrication processes involved place extremely high demands on the components used in terms of accuracy, purity, material and surface quality.

©MeislitzerPräzisionstechnik

Semiconductor chips are needed to make cars safer,mobile phones smarter and consumer electronics more user-friendly. The manufacture of such semiconductors requires machines that also contain special plastic parts. And it is these parts that are critical.

This is because semiconductor chips and the fabrication processes involved place extremely high demands on the components used in terms of accuracy, purity, material and surface quality.

Inferior plastic parts have to be eliminated, cause waste and therefore also costs. What is particularly challenging here is detecting flaws and the tiniest inclusions that are no bigger than 0.25 mm². Current inspection devices may enable the geometry tolerances to be verified, but are not however capable of adequately determining the material or the type and structure of the inclusion detected.

Many components with inclusions are therefore rejected as aprecaution. This delays the fabrication process and also gives rise to high costs. It is here that is the starting point for the OPtima research work.

Analysing Processes

CTR physicist, area and project manager Christina Hirschl explains the challenge: “We aim to achieve several things in the project. Firstly, we need to systematically examine the inclusions and identify the causes. We then intend to use the results for improving the entire fabrication process in order to develop an automatic quality assurance procedure, which can be integrated in the fabrication process and comes close to achieving zero defects.”

The first step will be to use micro-analytical methods for identifying the characteristics, structure and frequency of inclusions and their causes. Drawing on the results, a demonstrator will be built that can detect all three criteria – inclusion size, structure and material – in an environment of great product variety and dynamics. To achieve this, the team is systematically examining various different approaches such as optical, spectroscopic and acoustic detectionand test methods.

Resource-efficient manufacture

All the research work and demonstrator developments should lead to an improvement in resource and production efficiency in relationto raw materials, energy, operating time and waste prevention. If everything goes according to plan, the findings and results could also be used for other sectors, such as the food or medical technology industries, which also require high-purity plastic parts.

The "OPtima" project is co-funded by the research, technology and innovation (FTI) Initiative "Production der Zukunft", promoted from the Austrian Research Promotion Agency (FFG).

PROJECT FACTS & FIGURES:

>Title: OPtima – optimized production for polymer parts in semiconductor machine manufacture
>Programme: Produktion der Zukunft
>Programme coordinator: FFG Forschungsförderungsgesellschaft
>Project lead: CTR Carinthian Tech Research AG
>Duration: 2 years (04/2016 – 03/2018)
>Partners:
Lam Research AG
Meislitzer Präzisionstechnik GmbH
Polymer Competence Center Leoben GmbH
CTR Carinthian Tech Research

Weitere Informationen:

http://www.lamresearch.com/austria
http://www.feinmechanik.at
http://www.pccl.at
http://www.ctr.at
http://www.ffg.at

Mag Birgit Rader-Brunner | idw - Informationsdienst Wissenschaft

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>