Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Generating eco-friendly power with metal rotor blades

04.05.2015

Wind turbines deliver environmentally friendly electricity. Yet the fiber-reinforced plastics often used in very large rotor blades are almost impossible to recycle. Not so with steel blades: since these are composed of steel, their recyclability exceeds 90 percent. Plus they cost significantly less than comparable plastic blades.

Wind turbines feed eco-friendly power into the grid. To keep their weight down, the majority of larger rotor blades are made from fiber-reinforced plastics. These materials are rarely recycled at present, in part because it is very complicated to do so.


Technology demonstrator: formed from a 1.0 mm steel sheet and featuring integrated, folded reinforcement, the rotor blade was given its final shape with the help of an oil-water mixture.

© Fraunhofer IWU

Researchers at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in Chemnitz are therefore focusing on metal, and especially steel, as a blade material. In smaller installations, the greater weight of the steel blades is inconsequential; as installations get larger, light alloys can be used to keep blade weight down.

Collaborating with colleagues from the Free University Brussels (VUB) in the HyBlade project, Fraunhofer IWU is developing the required aerodynamics as well as the necessary manufacturing process chains.

Manufacturing steel blades offers numerous advantages. “First, it makes turbines significantly more ecological, since more than 90 percent of the steel can be recycled – so using metal rotor blades makes wind power truly environmentally friendly,” explains Marco Pröhl, a researcher at the IWU.

“What’s more, compared to similar blades made of fiber-reinforced plastic, the cost of rotor blade mass production drops by as much as 90 percent – and the blades can be manufactured more accurately.”

Metal blades can also be produced more quickly. Provided that processes are run in parallel – for instance, that a new metal sheet is fed into the production line as soon as the first blade has completed the first process step – then a completed rotor blade rolls off the conveyor belt roughly every 30 seconds. With fiber-reinforced plastics, the same process usually takes several hours.

Suitable for large-scale and automated manufacturing processes

The primary cause of these differences lies in the manufacturing process. Fiber-reinforced plastic blades often require significant manual processing: first, a suitable mold has to be made for the blades. Depending on the production variant, workers layer fiber mats in this mold, inject resin, and leave the component to harden for several hours in an oven.

This produces two half shells; once their edges have been trimmed, the halves can be glued together. These steps can be performed simultaneously, as in sheet metal blade manufacturing – but that doesn’t make them any quicker. It would take dozens of installations running in parallel to produce plastic blades at the same rate as metal ones.

In contrast, it is easy to automate the manufacturing metal rotors: the processes are similar to those in the auto industry, which means they are suitable for series production. The researchers start with a flat sheet of metal, which they fold using a bending die to give it a typical blade shape. Next, they laser weld the edges to form a closed profile.

After placing the preformed piece in a tool with the desired final shape, the researchers then pump a reusable water-oil mixture into the interior of the blade and put it under several thousand bars of pressure. This is equivalent to the pressure experienced underwater at a depth of many thousands of meters. This effectively inflates the blade, giving it its final form.

“The fact that we’re shaping the blade from the inside out lets us compensate for any inaccuracies in previous steps,” explains Pröhl. “The geometry ends up perfect after the first production step, with the blades matching the flow profile milled into the tool to within 0.1 millimeters.”

The researchers have already produced a blade 15 centimeters wide and 30 centimeters long, using it to optimize the individual processing steps. Their next step will be to produce an entire rotor for a vertical axis turbine with 2.8-meter-long blades and a diameter of two meters. Once it is installed at a test site for small wind turbines on the Belgian coast, it will be put through its paces.

Hendrik Schneider | Fraunhofer Forschung Kompakt
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/may/Generating-eco-friendly-power-with-metal-rotor-blades.html

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>