Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IWS Dresden collaborates with a strong research partner in Singapore

15.02.2017

The Fraunhofer IWS Dresden and the Singapore Institute of Manufacturing Technology (SIMTech) have signed a memorandum of understanding for international collaboration in the fields of laser-based additive manufacturing and diamond-like hard coating technology.

SIMTech is a research institute under Singapore’s Agency for Science, Technology and Research (A*STAR). The collaboration between Fraunhofer IWS and SIMTech started last year following Prof. Christoph Leyens, director and business unit manager Additive Manufacturing of the Fraunhofer IWS in Dresden, visit to SIMTech under its fellowship scheme.


Laser wire build-up of an expansion nozzle

Photo: Fraunhofer IWS Dresden


Coating of gear components with super hard Diamor® films by means of laser-arc technology

Photo: Frank Höhler

“With the signing of this memorandum of understanding, our collaboration will reach the next level of intensity” says Prof. Leyens, “For us, the collaboration with a world-leading institute in Singapore opens up new horizons in the important fields of additive manufacturing and coatings technology, both from a scientific and an application-oriented perspective.”

As a leading aerospace hub in the Asia-Pacific region, Singapore offers a huge market potential for these technologies. SIMTech also has strong links to industry through the A*STAR Aerospace Programme and partnerships with companies in the precision engi-neering, transportation, oil & gas, energy and electronics sectors.

Fraunhofer IWS itself is a world leading-research institute in laser materials processing, surface and coatings technology; its mission is to support industry with innovative engineering solutions. “SIMTech’s collaboration with Fraunhofer IWS will enable us to accelerate the transfer from research to commercialisation, as well as to develop partnerships with industry players, in Singapore and around the world.”, says Dr. Jun Wei, programme manager at SIMTech.

Over the last few years Fraunhofer IWS has established a major research focus on additive manufacturing of metals, ceramics and polymers using various AM processes. The spectrum of applications ranges, among others, from aviation, space, medicine, energy, automotive, mechanical engineering and tool making. In collaboration with the TU Dresden, Fraunhofer IWS is running a unique innovation center for additive manufacturing.

Diamond-like carbon coatings are already being widely used in industry. Hydrogen-free DLC-coatings show an even better performance. The coatings are fabricated using the unique laser-arc PVD technology developed at Fraunhofer IWS. “Our coatings are significantly harder and exhibit substantially improved frictional properties relative to state-of-the-art coating solutions”, says Prof. Andreas Leson, business unit manager PVD- and Nanotechnology at Fraunhofer IWS.

“Since friction and wear occur virtually everywhere, the interest in our innovative coatings is enormous”. The success story of the coatings development was awarded with the prestigious Joseph von Fraunhofer Prize.

Contact and further information:

Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden
01277 Dresden, Winterbergstr. 28

Prof. Christoph Leyens
Phone: +49 351 83391-3242
Fax: +49 351 83391-3300
E-Mail: christoph.leyens@iws.fraunhofer.de

Press and Public Relations
Dipl.-Ing. Virginie Garten
Phone: +49 351 83391-3336
Fax: +49 351 83391-3300
E-Mail: virginie.garten@iws.fraunhofer.de

Internet:
http://www.iws.fraunhofer.de and
http://www.iws.fraunhofer.de/en/pressandmedia/press_releases.html

Weitere Informationen:

http://www.iws.fraunhofer.de/en/centers/additive_manufacturing.html

Dipl.-Ing. Virginie Garten | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

More articles from Machine Engineering:

nachricht Nanostructured Alloying with Oxygen
09.04.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Enhanced ball screw drive with increased lifetime through novel double nut design
23.01.2018 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>