Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer Institutes develop non-destructive quality test for hybrid cast components

30.01.2017

Lightweight design is increasingly applying trend-setting hybrid structures made of fiber composite materials and lightweight metal alloys, combining the advantages of both types of materials in hybrid construction techniques. In the current state of the art, the joints are bonded or riveted. In recent years at Fraunhofer IFAM, a new type of joining technology has been developed for various types of hybrid joints in high pressure die casting. In comparison with conventional joining techniques, the cast parts have advantages in package size, lower weight, and galvanic isolation.

In order to use the hybrid cast components safely, three institutes in the Fraunhofer Gesellschaft are working together to research testing concepts to support industrial series production of these hybrid components.


Aluminum FRP joint produced by low-pressure die casting.

(c) Fraunhofer IFAM


Three-dimensional rendering of a crankcase with automatically detected defects.

(c) Fraunhofer IFAM

The combination of high pressure die castparts and fiber materials or wires opens up new potentials for lightweight components. These are increasingly in demand in a wide range of industries - particularly automotive and aerospace. Up to now, however, no suitable method exists for non-destructive quality inspection of such hybrid components, which is a prerequisite for industrial applications.

The project “HyQuality - Hybrid casting production with standardized quality assurance” brings together the technical experts from Fraunhofer Institutes IIS/EZRT, IZFP, and IFAM to jointly develop appropriate methods for this application. The goal is to come up with an inline inspection that is integrated in the production line and non-destructive in nature, which makes all types of defects in hybrid components visible and therefore enables their analysis.

Non-destructive monitoring – a look inside the part

In order to precisely detect the contact surfaces between fiber, wire, or sheet-metal reinforcements and the cast matrix, and to evaluate their quality, imaging technology must be used to show the material in as high a resolution as possible. X-ray technology, computed tomography and thermography are three of the technologies that are being considered in this context.

Industrial X-ray technologies, especially computed tomography, offer effective monitoring for a three-dimensional inspection of components. They provide a look into the interior of the objects and are therefore excellently suited for making even tiny defects within the materials visible.

The Development Center for X-ray Technology EZRT is a leading international research and development center with core competencies in the area of non-destructive monitoring along the entire product lifecycle. One essential focus of development is production monitoring in foundries using inline CT systems, which are capable of detecting deviations from the optimal production process at an early stage.

In addition to X-ray methods, the project plan calls for thermographic, acoustic, and magnetic inspection methods to be used by the Fraunhofer Institute for Non-Destructive Testing IZFP in Saarbruecken. The method known as active thermography enables rapid, easily automated defect detection, such as crack detection and identification of delamination and fiber fractures in carbon-fiber-reinforced plastic components.

Depending on the component, excitation occurs using optical impulses, ultrasound, or induction. With a resolution of about 15 mK, and an image frequency of 20 kHz, tiny variations in thermal flow can be detected, which may be caused by defects. Ultrasound testing is another versatile method. Depending on the requirements, tests using electromagnetic ultrasound (EMAT), airborne ultrasound, or high-frequency ultrasound in water immersion are possible approaches.

This selection is supplemented by the use of multi-frequency eddy-current testing. By exciting frequencies in the range of 100 Hz to 10 MHz, microstructure differences in the metal can be detected along with layer separation and cracks.

The goal of the development team is to test all of the methods with respect to production-integrated inline testing for hybrid castings. In order to determine the suitability of each of the non-destructive testing methods, and to draw a scientific comparison, the samples and components produced for the project will be tested destructively afterward. The results of the destructive testing will provide reference values and will be used to compare the results of the non-destructive test methods.

Weitere Informationen:

http://www.ifam.fraunhofer.de/en
http://www.iis.fraunhofer.de/en
http://www.izfp.fraunhofer.de/en

Martina Ohle | Fraunhofer-Gesellschaft

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape separates substance

Japanese researchers show the phase separation of two substances depends on the topology of the pore

Researchers at University of Tokyo Institute of Industrial Science (IIS) report a new physical model that shows how the topology of a porous material...

Im Focus: New study visualizes motion of water molecules, promises new wave of electronic devices

A novel approach to studying the viscosity of water has revealed new insights about the behavior of water molecules and may open pathways for liquid-based electronics.

A team of researchers led by the Department of Energy's Oak Ridge National Laboratory used a high-resolution inelastic X-ray scattering technique to measure...

Im Focus: Research trip to the mouth of the Amazon River: on the trail of the ocean’s material cycle

It is by far the most abundant river in the world. One fifth of the Earth’s entire freshwater supply flows from its mouth into the Atlantic pushing the ocean’s salt water several hundred kilometers out to sea. In April, Andrea Koschinsky, Professor of Geochemistry at Jacobs University, will travel to the estuary of the Amazon – as head of a recently approved, interdisciplinary research project on board the research ship, Meteor.

The Amazon River is almost 7,000 km long and is not only tremendously abundant but it also transports large quantities of trace metals such as iron and copper...

Im Focus: The Coldest Chip in the World

Physicists at the University of Basel have succeeded in cooling a nanoelectronic chip to a temperature lower than 3 millikelvin. The scientists from the Department of Physics and the Swiss Nanoscience Institute set this record in collaboration with colleagues from Germany and Finland. They used magnetic cooling to cool the electrical connections as well as the chip itself. The results were published in the journal Applied Physics Letters.

Even scientists like to compete for records, which is why numerous working groups worldwide are using high-tech refrigerators to reach temperatures as close to...

Im Focus: Star mergers: A new test of gravity, dark energy theories

Observations of neutron star collision challenge some existing theories

When scientists recorded a rippling in space-time, followed within two seconds by an associated burst of light observed by dozens of telescopes around the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Shape separates substance

29.12.2017 | Materials Sciences

New structure of key protein holds clues for better drug design

29.12.2017 | Health and Medicine

Researchers describe first-ever hybrid bird species from the Amazon

29.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>