Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electricity from waste heat made possible by ceramics


Where conventional materials reach their limits, ceramics can display their excellent properties. Functional ceramics – so-called thermoelectric materials – can convert waste heat directly into electricity, for example, in high-temperature processes. At the Hannover Messe 2016, Europe's largest ceramics research institute presents for the first time a system that demonstrates the reliable functionality of thermoelectric ceramic modules developed at Fraunhofer IKTS. (Hall 6, Booth B16)

Currently, less than half of the energy used in industrial processes, transport or households is actually utilized. The majority of primary energy still escapes despite numerous energy-saving measures as waste heat into the environment.

Test stand for efficient and autonomous power generation of the waste heat of an all-ceramic heating conductor working at 800 °C in ceramic TEG modules.

Fraunhofer IKTS

Thermoelectric generators (TEG) can help to transform this wasted heat energy into electricity. However, there are still obstacles in terms of cost efficiency, availability of raw materials, processing and environmental sustainability of the applied thermoelectric materials.

Ceramic materials provide a solution with an exceptionally flexible property range. They can be produced environmentally friendly from readily available raw materials. Up to now, ceramic TEGs for only limited tasks and low energy conversion efficiency were realized.

Fraunhofer IKTS has extensive know-how regarding the production of ceramic thermoelectric materials. As the first German research institute, IKTS managed the cost-effective production of fully functional ceramic TEGs that have a long lifetime and can be used at high temperatures, which makes them energetically interesting.

“We offer our customers economically attractive ceramic TEG modules, with which valuable waste heat can be converted into electricity independently and reliably – and at temperatures of up to 1000 °C. Such robust, maintenance-free and particularly durable TEGs are attractive for a variety of applications, e.g. in metallurgical processes, or in the hot zones of internal combustion engines.” says Hans-Peter Martin, head of the group “Nitride Ceramics and Structural Ceramics with Electrical Function” at Fraunhofer IKTS.

Scientists at the Fraunhofer IKTS offer a customized development of ceramic TEG modules – adapted for the conditions of the host process. Therefore, the ceramic components are optimized in terms of electrical parameters, chemical interactions and geometrical requirements, and – on request – integrated into the individual thermal system. With the system configuration shown in Hannover, visitors can experience firsthand how the waste heat of a working all-ceramic heating conductor at 800 °C is converted in the ceramic TEG modules and used for controlling a display.

The expertise to build such TEGs at Fraunhofer IKTS is derived from the institute’s decades of experience with electrically functionalized high-temperature materials, such as heat conductors, evaporators and ceramic foams. Guests and partners can also inform themselves about these technology offers at the Hannover Messe 2016.

Weitere Informationen:

Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Machine Engineering:

nachricht Process-Integrated Inspection for Ultrasound-Supported Friction Stir Welding of Metal Hybrid-Joints
27.09.2016 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht Lightweight robots in manual assembly
13.09.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>