Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Casting of SiSiC: new perspectives for chemical and plant engineering

04.09.2015

Innovative casting technology for the manufacturing of silicon-infiltrated silicion carbide (SiSiC) opens new perspectives for chemical and plant engineering:

Despite its outstanding chemical, thermal and tribological properties, the high costs of production currently prevent the use of silicon-infiltrated SiSiC in many applications. A novel method overcomes technical manufacturing limitations of conventional shaping methods.


Together with SICcast Mineralguss GmbH, Fraunhofer IKTS develops ceramic radial pump impellers.

Picture: Fraunhofer IKTS

Researchers at Fraunhofer IKTS in Dresden developed a process to realize large-scale, complex SiSiC components with differences in wall thickness and demanding undercuts cost-effectively.

They adapted the established production process for silicon-filled reaction resin concretes by SICcast Mineralguss GmbH to the ceramic production. Coarse particles mixed with a polymeric binder are casted and cured in one single pressure step into open molds.

In this way, cost-intensive material-, machine- and personnel-consuming conventional modular construction and process combinations can be bypassed.

Increased lifetime and productivity, minimized costs

"The efficient manufacturing process allows the substitution of conventional materials in, among others, chemical and plant engineering. By using silicon-infiltrated SiSiC, the lifetime of machines and their productivity can be significantly improved. This presents great potential to increase competitiveness", says Jörg Adler, department head at Fraunhofer IKTS in Dresden.

Radial pump impellers were manufactured as first process application together with SICcast Mineralguss GmbH and Düchting Pumpen GmbH.

Such ceramic pumps are primarily applied for processing technically demanding media, such as corrosive chemicals or suspensions highly enriched with abrasive particles at very high temperatures. Other potential applications are nozzles, mills, burners and large-scale structural components for high-precision applications in the optical industry.

From October 20 to 23 you will meet IKTS researchers in Hall B1 on CERAMIC APPLI-CATIONS Booth 219/320.

Weitere Informationen:

http://www.ikts.fraunhofer.de/content/dam/ikts/en/doc2/Press-and-Media/Press_rel...

Katrin Schwarz | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

More articles from Machine Engineering:

nachricht Scientists from Hannover develop a novel lightweight production process
27.09.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>