Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D meets FRP: More flexibility for highly stressed components

08.03.2016

Individuality and adaptability need not be at odds with robustness and stability: It is envisaged that products such as seat shells for automobiles or medical prostheses which are required to meet all of these characteristics will be produced in future using a combination of 3D printing and fiber composite technology. 3D-printing ensures maximum flexibility in terms of the form and function of the component; the fiber composite plastic provides the stability required, even when subjected to high loads.

The Fraunhofer-Institute for Production Technology IPT in Aachen, in collaboration with its partners within various engineering groups, is currently investigating the combined manufacturing process as part of “LightFlex”, a research project funded by the Federal Ministry of Education and Research (BMBF) in Germany and will be presenting its initial results to the expert visitors to the JEC Trade Fair from 8-10 March in Paris.


Pilot demonstration part produced using the new process combination of 3D printing with FRP

Copyright: Fraunhofer IPT

Injection molded plastic components which are combined with fiber-composite materials for reinforcement, have one major drawback: it is difficult to adapt them to meet individual wishes or requirements. Since expensive and inflexible injection molding tools are used, only high-volume production is generally affordable.

Special functionalities or modifications made in the product development stage are always associated with costly and time-consuming post-processing steps. Low-volume runs or even prototype manufacture are frequently economically unviable due to the high costs involved.

In such cases, the Fraunhofer IPT and its partners in the “LightFlex” project are therefore planning to replace use of injection molded components with components produced via additive production: 3D-printing permits parts to be customized to meet virtually any requirements and to be provided with the capability to perform any function specified prior to being joined to a thermoplastic fiber composite material in order to achieve the required level of load capacity.

Organic sheets made of unidirectional, semi-finished materials are used in order to optimize the load-bearing capacity of parts used in FRP components. However instead of standard goods with fixed dimensions, near-net-shape organic sheets tailored to suit each individual application are produced using a facility constructed by the Fraunhofer IPT.

This minimizes material waste and results in significant savings in terms of the carbon fibers whose production is associated with high energy consumption. The facility used, had previously been developed by the Fraunhofer IPT as part of the BMBF-funded “E-Profit” project.

The Fraunhofer IPT combines the organic sheets with the 3D-printed structure in a thermoforming process. The 3D-printed part was provided by the project partner Wehl Group Sintertechnik GmbH in Salach.

Overall, the “LightFlex” project encompasses the entire process chain in terms of connected, adaptive production – from the production of semi-finished goods by the Institute for Plastics Processing (IKV) in industry and skilled trades at the RWTH university in Aachen and other partners through to laser trimming by the company Arges GmbH.

The partners will be presenting the production machine as well as a pilot demonstration part produced using the new process combination to visitors to the JEC World international fair for composite materials 2016 in Paris.

Partners in the “LightFlex – Photonic process chain for the flexible, generative, automated and cost-efficient manufacture of customized, hybrid lightweight engineering components from thermoplastic fiber composite plastic” project

- Adam Opel AG, Rüsselsheim
- AFPT GmbH, Dörth
- Arges GmbH, Wackersdorf
- Breyer GmbH Maschinenfabrik, Singen
- F.A. Kümpers GmbH & Co. KG, Rheine
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen
- KUKA Industries, Reis GmbH & Co. KG Maschinenfabrik, Geschäftsbereich Reis Extrusion, Merzenich
- Pixargus GmbH, Würselen
- Wehl Group Sintertechnik GmbH, Salach

This project is funded by the Federal Ministry for Education and Research in Germany (BMBF), reference number 03XP0013. The partners in the project are grateful for this opportunity to thank the BMBF for their support.

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20160308lightflexjec.html

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>