Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D meets FRP: More flexibility for highly stressed components

08.03.2016

Individuality and adaptability need not be at odds with robustness and stability: It is envisaged that products such as seat shells for automobiles or medical prostheses which are required to meet all of these characteristics will be produced in future using a combination of 3D printing and fiber composite technology. 3D-printing ensures maximum flexibility in terms of the form and function of the component; the fiber composite plastic provides the stability required, even when subjected to high loads.

The Fraunhofer-Institute for Production Technology IPT in Aachen, in collaboration with its partners within various engineering groups, is currently investigating the combined manufacturing process as part of “LightFlex”, a research project funded by the Federal Ministry of Education and Research (BMBF) in Germany and will be presenting its initial results to the expert visitors to the JEC Trade Fair from 8-10 March in Paris.


Pilot demonstration part produced using the new process combination of 3D printing with FRP

Copyright: Fraunhofer IPT

Injection molded plastic components which are combined with fiber-composite materials for reinforcement, have one major drawback: it is difficult to adapt them to meet individual wishes or requirements. Since expensive and inflexible injection molding tools are used, only high-volume production is generally affordable.

Special functionalities or modifications made in the product development stage are always associated with costly and time-consuming post-processing steps. Low-volume runs or even prototype manufacture are frequently economically unviable due to the high costs involved.

In such cases, the Fraunhofer IPT and its partners in the “LightFlex” project are therefore planning to replace use of injection molded components with components produced via additive production: 3D-printing permits parts to be customized to meet virtually any requirements and to be provided with the capability to perform any function specified prior to being joined to a thermoplastic fiber composite material in order to achieve the required level of load capacity.

Organic sheets made of unidirectional, semi-finished materials are used in order to optimize the load-bearing capacity of parts used in FRP components. However instead of standard goods with fixed dimensions, near-net-shape organic sheets tailored to suit each individual application are produced using a facility constructed by the Fraunhofer IPT.

This minimizes material waste and results in significant savings in terms of the carbon fibers whose production is associated with high energy consumption. The facility used, had previously been developed by the Fraunhofer IPT as part of the BMBF-funded “E-Profit” project.

The Fraunhofer IPT combines the organic sheets with the 3D-printed structure in a thermoforming process. The 3D-printed part was provided by the project partner Wehl Group Sintertechnik GmbH in Salach.

Overall, the “LightFlex” project encompasses the entire process chain in terms of connected, adaptive production – from the production of semi-finished goods by the Institute for Plastics Processing (IKV) in industry and skilled trades at the RWTH university in Aachen and other partners through to laser trimming by the company Arges GmbH.

The partners will be presenting the production machine as well as a pilot demonstration part produced using the new process combination to visitors to the JEC World international fair for composite materials 2016 in Paris.

Partners in the “LightFlex – Photonic process chain for the flexible, generative, automated and cost-efficient manufacture of customized, hybrid lightweight engineering components from thermoplastic fiber composite plastic” project

- Adam Opel AG, Rüsselsheim
- AFPT GmbH, Dörth
- Arges GmbH, Wackersdorf
- Breyer GmbH Maschinenfabrik, Singen
- F.A. Kümpers GmbH & Co. KG, Rheine
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen
- KUKA Industries, Reis GmbH & Co. KG Maschinenfabrik, Geschäftsbereich Reis Extrusion, Merzenich
- Pixargus GmbH, Würselen
- Wehl Group Sintertechnik GmbH, Salach

This project is funded by the Federal Ministry for Education and Research in Germany (BMBF), reference number 03XP0013. The partners in the project are grateful for this opportunity to thank the BMBF for their support.

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20160308lightflexjec.html

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Machine Engineering:

nachricht LZH optimizes laser-based CFRP reworking for the aircraft industry
24.11.2016 | Laser Zentrum Hannover e.V.

nachricht eldec generators CUSTOM LINE: Customized energy source for perfect induction heating
23.11.2016 | EMAG eldec Induction GmbH

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>