Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D meets FRP: More flexibility for highly stressed components

08.03.2016

Individuality and adaptability need not be at odds with robustness and stability: It is envisaged that products such as seat shells for automobiles or medical prostheses which are required to meet all of these characteristics will be produced in future using a combination of 3D printing and fiber composite technology. 3D-printing ensures maximum flexibility in terms of the form and function of the component; the fiber composite plastic provides the stability required, even when subjected to high loads.

The Fraunhofer-Institute for Production Technology IPT in Aachen, in collaboration with its partners within various engineering groups, is currently investigating the combined manufacturing process as part of “LightFlex”, a research project funded by the Federal Ministry of Education and Research (BMBF) in Germany and will be presenting its initial results to the expert visitors to the JEC Trade Fair from 8-10 March in Paris.


Pilot demonstration part produced using the new process combination of 3D printing with FRP

Copyright: Fraunhofer IPT

Injection molded plastic components which are combined with fiber-composite materials for reinforcement, have one major drawback: it is difficult to adapt them to meet individual wishes or requirements. Since expensive and inflexible injection molding tools are used, only high-volume production is generally affordable.

Special functionalities or modifications made in the product development stage are always associated with costly and time-consuming post-processing steps. Low-volume runs or even prototype manufacture are frequently economically unviable due to the high costs involved.

In such cases, the Fraunhofer IPT and its partners in the “LightFlex” project are therefore planning to replace use of injection molded components with components produced via additive production: 3D-printing permits parts to be customized to meet virtually any requirements and to be provided with the capability to perform any function specified prior to being joined to a thermoplastic fiber composite material in order to achieve the required level of load capacity.

Organic sheets made of unidirectional, semi-finished materials are used in order to optimize the load-bearing capacity of parts used in FRP components. However instead of standard goods with fixed dimensions, near-net-shape organic sheets tailored to suit each individual application are produced using a facility constructed by the Fraunhofer IPT.

This minimizes material waste and results in significant savings in terms of the carbon fibers whose production is associated with high energy consumption. The facility used, had previously been developed by the Fraunhofer IPT as part of the BMBF-funded “E-Profit” project.

The Fraunhofer IPT combines the organic sheets with the 3D-printed structure in a thermoforming process. The 3D-printed part was provided by the project partner Wehl Group Sintertechnik GmbH in Salach.

Overall, the “LightFlex” project encompasses the entire process chain in terms of connected, adaptive production – from the production of semi-finished goods by the Institute for Plastics Processing (IKV) in industry and skilled trades at the RWTH university in Aachen and other partners through to laser trimming by the company Arges GmbH.

The partners will be presenting the production machine as well as a pilot demonstration part produced using the new process combination to visitors to the JEC World international fair for composite materials 2016 in Paris.

Partners in the “LightFlex – Photonic process chain for the flexible, generative, automated and cost-efficient manufacture of customized, hybrid lightweight engineering components from thermoplastic fiber composite plastic” project

- Adam Opel AG, Rüsselsheim
- AFPT GmbH, Dörth
- Arges GmbH, Wackersdorf
- Breyer GmbH Maschinenfabrik, Singen
- F.A. Kümpers GmbH & Co. KG, Rheine
- Fraunhofer-Institut für Produktionstechnologie IPT, Aachen
- Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen
- KUKA Industries, Reis GmbH & Co. KG Maschinenfabrik, Geschäftsbereich Reis Extrusion, Merzenich
- Pixargus GmbH, Würselen
- Wehl Group Sintertechnik GmbH, Salach

This project is funded by the Federal Ministry for Education and Research in Germany (BMBF), reference number 03XP0013. The partners in the project are grateful for this opportunity to thank the BMBF for their support.

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20160308lightflexjec.html

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Machine Engineering:

nachricht PRESTO – Highly Dynamic Powerhouses
15.05.2017 | JULABO GmbH

nachricht Making lightweight construction suitable for series production
24.04.2017 | Laser Zentrum Hannover e.V.

All articles from Machine Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>