Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray Laser Used to Produce Movies of Atomic-Scale Motion

26.05.2015

Stroboscopic x-ray pulses scatter from a vibrating crystal and reveal how energy moves

Atoms and the electrons that hold them together store energy in their electronic bonding structure and in their atomic vibrations. X-ray laser scattering techniques, which can record electron and atom motion at ultra-fast time scales, have been used to measure and track the transfer of energy from one atomic-scale storage mode to another.


Image courtesy of SLAC National Accelerator Laborator

A series of x-ray scattering images are taken at ultrafast time intervals (Δt) with an x-ray laser after excitation with an infra-red source that energizes the vibrational modes of a germanium crystal. The time domain images yield a vibrational intensity map (w) relative to the orientation and spacing (q) of the atomic crystalline array.

The Impact

This x-ray scattering technique allows scientists to track the motion of atoms as they respond to sudden changes in their energy state. Tracking the mode of energy flow is critical to understanding the fundamental dynamics of energy conversion materials.

Summary

X-ray scattering can measure and describe the atomic positions in technologically important crystalline solids such as silicon and germanium. After an excitation by heat or radiation, the flow of energy can be tracked as it moves through various storage modes; such as atomic spacing and bonding, atomic vibrations, and electron or magnetic ordering. The new technique uses advances in synchronized infra-red and x-ray laser pulses along with a large area position sensitive x-ray detector, to make x-ray scattering movies that track the response of the material from the moment of excitation. Infra-red light excites electrons and the x-rays measure the vibrational wave length and frequency where electron charge distortions couple strongly to changes in the atomic vibrations. Short-lived transient states can be excited and measured and help determine how energy flows on atomic length scales. The time-domain measurements are a direct way to follow the excitations of solids and the flow of energy well away from their “home” positions and ground state.

Funding

Department of Energy, Office of Science, Basic Energy Sciences program, for both the research and the use of the Linac Coherent Light Source user facility at SLAC.

Publications

M. Trigo et al., “Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations.” Nature Physics 9, 790 (2013).

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>