Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray Laser Used to Produce Movies of Atomic-Scale Motion

26.05.2015

Stroboscopic x-ray pulses scatter from a vibrating crystal and reveal how energy moves

Atoms and the electrons that hold them together store energy in their electronic bonding structure and in their atomic vibrations. X-ray laser scattering techniques, which can record electron and atom motion at ultra-fast time scales, have been used to measure and track the transfer of energy from one atomic-scale storage mode to another.


Image courtesy of SLAC National Accelerator Laborator

A series of x-ray scattering images are taken at ultrafast time intervals (Δt) with an x-ray laser after excitation with an infra-red source that energizes the vibrational modes of a germanium crystal. The time domain images yield a vibrational intensity map (w) relative to the orientation and spacing (q) of the atomic crystalline array.

The Impact

This x-ray scattering technique allows scientists to track the motion of atoms as they respond to sudden changes in their energy state. Tracking the mode of energy flow is critical to understanding the fundamental dynamics of energy conversion materials.

Summary

X-ray scattering can measure and describe the atomic positions in technologically important crystalline solids such as silicon and germanium. After an excitation by heat or radiation, the flow of energy can be tracked as it moves through various storage modes; such as atomic spacing and bonding, atomic vibrations, and electron or magnetic ordering. The new technique uses advances in synchronized infra-red and x-ray laser pulses along with a large area position sensitive x-ray detector, to make x-ray scattering movies that track the response of the material from the moment of excitation. Infra-red light excites electrons and the x-rays measure the vibrational wave length and frequency where electron charge distortions couple strongly to changes in the atomic vibrations. Short-lived transient states can be excited and measured and help determine how energy flows on atomic length scales. The time-domain measurements are a direct way to follow the excitations of solids and the flow of energy well away from their “home” positions and ground state.

Funding

Department of Energy, Office of Science, Basic Energy Sciences program, for both the research and the use of the Linac Coherent Light Source user facility at SLAC.

Publications

M. Trigo et al., “Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon–phonon correlations.” Nature Physics 9, 790 (2013).

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>