Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wind of Change: European grid prepares for massive integration of renewables


On October 30th, the ancient city of Rome welcomed an important new initiative for the large-scale integration of grids and of renewables sources into Europe’s energy mix, with nearly 40 leading organisations from research, industry, utilities, transmission systems operators announcing their united goal to find the BEST PATHS to deliver affordable, reliable power in Europe from “coast to coast”.

An ambitious research project which will be funded by the European Commission, BEST PATHS, will focus on the development of high-capacity transmission networks needed to meet Europe’s long-term energy goals and incorporation of renewable energy sources.

The project unites expert partners around five large-scale demonstration areas focused on ensuring increased network capacity and system flexibility – incorporating innovative transmission systems and industrial solutions to link offshore wind farms and improve the interconnections of the entire power grid.

Project coordinator, Mr. Vicente González López of Red Eléctrica de España (REE) addressed the opening of a new challenge for the European power industry: “It goes beyond the intrinsic complexity of the individual developments proposed, since the project is going to require an effort of coordination to jointly analyse the results of each individual demonstrations and evaluate their combined impact in the European power system of the future.”

Describing the actors working to deliver this ambitious project, Mr. González López said:
“Thirty-nine key players have joined together to deliver a substantial change to the power grid’s capacity and flexibility. They represent the entire chain of innovation in Europe, from universities and research centres generating new knowledge, the power industry developing new products, Transmission Systems Operators and utilities, specifying their needs of new industrial solutions to allow the grid to better serve society.”

The Federal Institute for Materials Research and Testing (BAM) acts as one of the aforementioned partners. The capacity of overhead power lines can be enhanced using High Temperature – Low Sag (HTLS) conductors. This technology allows an increase in the current rating of up to 50%, for a given voltage level and tower height.

Researchers at BAM will provide data on the relevant physical material properties of different HTLS conductors. These will be done within the scope of one BEST PATHS demonstration project, in order to refine numerical models and ensure safe design.

The experimental work will address short term characteristics like elastic behavior under elevated temperatures and thermo mechanical coupling effects as well as long term performance criteria e.g. creep, fatigue and durability. The experimental data from tests on lines and joints will provide design rules ensuring that the entire system (conductors and fittings) remain damage-free over time (inclusive of load cycle impacts).

Bridging the gap from often remote renewable electricity production to high-load consumption centres, BEST PATHS will focus on developing inter-operable multi-terminal High Voltage Direct Current grids; innovative upgrading and repowering existing AC corridors; and superconducting high power links.

The experimental results of BEST PATHS will be integrated into European impact analyses to show the scalability of the solutions and will be made available as soon as 2018 to benefit replication across the pan-European transmission network and electricity market.

BEST PATHS stands for ‘’BEyond State-of-the-art Technologies for rePowering Ac corridors and multi-Terminal HVDC Systems’’. It involves 39 partners, with a budget of 63 million Euros that will be 56% co-funded by the European Commission under the 7th Framework Programme for Research, Technological Development and Demonstration under grant agreement no. 612748. It is coordinated by Red Eléctrica de España (REE), and is set to run until September 2018.

Dr.-Ing. Milad Mehdianpour
Department 7 Safety of Structures

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>