Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind of Change: European grid prepares for massive integration of renewables

07.11.2014

On October 30th, the ancient city of Rome welcomed an important new initiative for the large-scale integration of grids and of renewables sources into Europe’s energy mix, with nearly 40 leading organisations from research, industry, utilities, transmission systems operators announcing their united goal to find the BEST PATHS to deliver affordable, reliable power in Europe from “coast to coast”.

An ambitious research project which will be funded by the European Commission, BEST PATHS, will focus on the development of high-capacity transmission networks needed to meet Europe’s long-term energy goals and incorporation of renewable energy sources.

The project unites expert partners around five large-scale demonstration areas focused on ensuring increased network capacity and system flexibility – incorporating innovative transmission systems and industrial solutions to link offshore wind farms and improve the interconnections of the entire power grid.

Project coordinator, Mr. Vicente González López of Red Eléctrica de España (REE) addressed the opening of a new challenge for the European power industry: “It goes beyond the intrinsic complexity of the individual developments proposed, since the project is going to require an effort of coordination to jointly analyse the results of each individual demonstrations and evaluate their combined impact in the European power system of the future.”

Describing the actors working to deliver this ambitious project, Mr. González López said:
“Thirty-nine key players have joined together to deliver a substantial change to the power grid’s capacity and flexibility. They represent the entire chain of innovation in Europe, from universities and research centres generating new knowledge, the power industry developing new products, Transmission Systems Operators and utilities, specifying their needs of new industrial solutions to allow the grid to better serve society.”

The Federal Institute for Materials Research and Testing (BAM) acts as one of the aforementioned partners. The capacity of overhead power lines can be enhanced using High Temperature – Low Sag (HTLS) conductors. This technology allows an increase in the current rating of up to 50%, for a given voltage level and tower height.

Researchers at BAM will provide data on the relevant physical material properties of different HTLS conductors. These will be done within the scope of one BEST PATHS demonstration project, in order to refine numerical models and ensure safe design.

The experimental work will address short term characteristics like elastic behavior under elevated temperatures and thermo mechanical coupling effects as well as long term performance criteria e.g. creep, fatigue and durability. The experimental data from tests on lines and joints will provide design rules ensuring that the entire system (conductors and fittings) remain damage-free over time (inclusive of load cycle impacts).

Bridging the gap from often remote renewable electricity production to high-load consumption centres, BEST PATHS will focus on developing inter-operable multi-terminal High Voltage Direct Current grids; innovative upgrading and repowering existing AC corridors; and superconducting high power links.

The experimental results of BEST PATHS will be integrated into European impact analyses to show the scalability of the solutions and will be made available as soon as 2018 to benefit replication across the pan-European transmission network and electricity market.

BEST PATHS stands for ‘’BEyond State-of-the-art Technologies for rePowering Ac corridors and multi-Terminal HVDC Systems’’. It involves 39 partners, with a budget of 63 million Euros that will be 56% co-funded by the European Commission under the 7th Framework Programme for Research, Technological Development and Demonstration under grant agreement no. 612748. It is coordinated by Red Eléctrica de España (REE), and is set to run until September 2018.

Contact:
Dr.-Ing. Milad Mehdianpour
Department 7 Safety of Structures
Email: Milad.Mehdianpour@bam.de

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:
http://www.bam.de

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>