Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind of Change: European grid prepares for massive integration of renewables

07.11.2014

On October 30th, the ancient city of Rome welcomed an important new initiative for the large-scale integration of grids and of renewables sources into Europe’s energy mix, with nearly 40 leading organisations from research, industry, utilities, transmission systems operators announcing their united goal to find the BEST PATHS to deliver affordable, reliable power in Europe from “coast to coast”.

An ambitious research project which will be funded by the European Commission, BEST PATHS, will focus on the development of high-capacity transmission networks needed to meet Europe’s long-term energy goals and incorporation of renewable energy sources.

The project unites expert partners around five large-scale demonstration areas focused on ensuring increased network capacity and system flexibility – incorporating innovative transmission systems and industrial solutions to link offshore wind farms and improve the interconnections of the entire power grid.

Project coordinator, Mr. Vicente González López of Red Eléctrica de España (REE) addressed the opening of a new challenge for the European power industry: “It goes beyond the intrinsic complexity of the individual developments proposed, since the project is going to require an effort of coordination to jointly analyse the results of each individual demonstrations and evaluate their combined impact in the European power system of the future.”

Describing the actors working to deliver this ambitious project, Mr. González López said:
“Thirty-nine key players have joined together to deliver a substantial change to the power grid’s capacity and flexibility. They represent the entire chain of innovation in Europe, from universities and research centres generating new knowledge, the power industry developing new products, Transmission Systems Operators and utilities, specifying their needs of new industrial solutions to allow the grid to better serve society.”

The Federal Institute for Materials Research and Testing (BAM) acts as one of the aforementioned partners. The capacity of overhead power lines can be enhanced using High Temperature – Low Sag (HTLS) conductors. This technology allows an increase in the current rating of up to 50%, for a given voltage level and tower height.

Researchers at BAM will provide data on the relevant physical material properties of different HTLS conductors. These will be done within the scope of one BEST PATHS demonstration project, in order to refine numerical models and ensure safe design.

The experimental work will address short term characteristics like elastic behavior under elevated temperatures and thermo mechanical coupling effects as well as long term performance criteria e.g. creep, fatigue and durability. The experimental data from tests on lines and joints will provide design rules ensuring that the entire system (conductors and fittings) remain damage-free over time (inclusive of load cycle impacts).

Bridging the gap from often remote renewable electricity production to high-load consumption centres, BEST PATHS will focus on developing inter-operable multi-terminal High Voltage Direct Current grids; innovative upgrading and repowering existing AC corridors; and superconducting high power links.

The experimental results of BEST PATHS will be integrated into European impact analyses to show the scalability of the solutions and will be made available as soon as 2018 to benefit replication across the pan-European transmission network and electricity market.

BEST PATHS stands for ‘’BEyond State-of-the-art Technologies for rePowering Ac corridors and multi-Terminal HVDC Systems’’. It involves 39 partners, with a budget of 63 million Euros that will be 56% co-funded by the European Commission under the 7th Framework Programme for Research, Technological Development and Demonstration under grant agreement no. 612748. It is coordinated by Red Eléctrica de España (REE), and is set to run until September 2018.

Contact:
Dr.-Ing. Milad Mehdianpour
Department 7 Safety of Structures
Email: Milad.Mehdianpour@bam.de

Dr. Ulrike Rockland | idw - Informationsdienst Wissenschaft
Further information:
http://www.bam.de

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>