Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the Secrets of Super Solar Power Perovskites

18.03.2015

University of Utah study of magnetic field effects could help researchers to fully optimize organic-inorganic hybrid perovskite solar cells

The best hope for cheap, super-efficient solar power is a remarkable family of crystalline materials called hybrid perovskites. In just five years of development, hybrid perovskite solar cells have attained power conversion efficiencies that took decades to achieve with the top-performing conventional materials used to generate electricity from sunlight.


University of Utah

Schematic presentation of the obtained magnetic field effect of photocarriers in photovoltaic cells and injected carriers in light emitting diodes based on hybrid organic/inorganic perovskite semiconductors, which originates from different precession frequencies of the electron (red) and hole (blue) about an applied magnetic field (arrow).

Now researchers at the University of Utah, in collaboration with the University of Texas at Dallas, have uncovered some of the secrets behind the amazing material’s performance. The findings, published today in the journal Nature Physics, help fill a deep void in hybrid perovskite solar cell research. Scientists and engineers have lacked a clear understanding of the precise goings on at the molecular level.

Among the practical results of the new study is proof of a way to rapidly test the performance of different prototypes of hybrid perovskite materials using magnetic fields, according to lead author Charlie Zhang, a post-doctoral research fellow, and senior author Z. Valy Vardeny, a distinguished professor of physics at the University of Utah.

“Our group has unique expertise in magnetic field effects,” Vardeny says. “We wanted to see if magnetic field effects would tell us why the efficiency is so high.”

Probing electronic properties
Applying a magnetic field makes it possible to glean clues about the behavior of electrons and “holes” in semiconductor compounds. In photovoltaic solar cells, molecules absorb incoming photons of sunlight. Each absorbed photon can generate an exciton, the pairing of an electron and a corresponding electron hole. These pairings are short-lived and split into free, charge-carrying particles that drive an electric current.

Electrons and holes have a magnetic-related property called ‘spin’, a form of angular momentum; and the torque of a magnetic field can alter the spin direction. Spin can’t be observed directly, but spin properties can be inferred by looking at readily measurable properties, such as changes in the electrical conductivity of a material, or changes in photoluminescence – its tendency to emit light after absorbing photons – when it is subjected to a magnetic field.

Zhang and colleagues measured magnetic field-induced changes in these properties in an assortment of fabricated hybrid perovskite solar cells having different solar power conversion efficiencies. They used a typical hybrid perovskite material, methylammonium lead iodide, or MAPbI3. (Hybrid perovskites follow the naming convention MAPbX3, with MA denoting the organic methylammonium group that is combined with an inorganic group made of lead (Pb) and either chloride, bromide, or iodide (X)). Contrary to conventional wisdom in the field, the Utah scientists found pronounced magnetic field effects. The magnetic properties of the heavy atoms of lead and iodine were thought to minimize magnetic field effects in hybrid perovskite solar cells.

How it works
The researchers proposed a mechanism to explain the effects based on how a magnetic field changes the spin configuration of electron-hole pairs. The spin configuration affects the rate at which electron-hole pairs split apart or recombine, which in turn respectively changes the electrical conductivity and photoluminescence of the perovskite. They dubbed this effect the ‘delta-g mechanism’, with g being a factor that describes the magnetic moment of an electron in the material. Delta-g is the difference between the g-factors of an electron and hole, a difference that becomes crucial in how hybrid perovskite materials perform.

They verified this mechanism by measuring delta-g directly using a technique called field-induced circular polarized emission. It proved to be much larger than delta-g in ordinary organic solar cells, as would be expected if the delta-g mechanism were correct. For further confirmation, the researchers used a spectroscopy technique to measure the fleeting lifetimes – in trillionths of a second – of electron-hole pairs created by light absorption in the hybrid perovskite solar cells. The results also fit the delta-g mechanism.

Answering key questions
The findings point to an answer to a critical question: whether hybrid perovskite devices behave more like silicon solar cells or like so-called excitonic solar cells made of organic polymers. Vardeny said the magnetic field effects nailed down by his group are telling. “This material is not excitonic. If it were, we would not see this effect. It is not like organic photovoltaic materials.”

The efficiency of converting sunlight to electric power has a theoretical limit of 33 percent. The hybrid perovskite photovoltaic devices are pushing 20 percent, not as good as the 26 percent of the best silicon cells, but closing in – and the hybrid perovskites can be produced at a fraction of the cost. The new findings provide more detailed understanding of the underlying physics that should help researchers to fully optimize hybrid perovskite solar cells.

Harnessing solar energy using photovoltaic cells has become more accessible with the addition of the hybrid perovskite 'miracle materials', Vardeny says. "This is important since the gasoline price at the pumps would not stay that low forever."

University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350
www.unews.utah.edu

Contact Information
-- Z. Valy Vardeny, distinguished professor of physics – office (801) 581-8372, cell 801-278-5433, val@physics.utah.edu
-- Charlie Zhang, title – office 801-585-1653, cell 801-739-2098, chzhang@physics.utah.edu
-- Joe Rojas-Burke, senior science writer, University of Utah Communications Office –
office 801-585-6861, cell 503-896-1079, joe.rojas@utah.edu

Joe Rojas-Burke | newswise

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>