Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The “MeBot” robotic wheelchair can climb steps on its own

15.09.2016

Pittsburgh-based Human Engineering Research Lab (HERL) has developed the first ever robotic wheelchair – the MeBot – capable of climbing steps and mounting curbs on its own. The innovation came up against other systems at the first Cybathlon, which will take place at ETH Zürich in Kloten, Switzerland on October 8.

Steps and curbs currently pose a significant issue for wheelchair users. Even the most modern technologies are unable to surmount these obstacles automatically – instead, users have to ask for help, or need a ramp or have to build up momentum to climb up. As Rory Cooper, Director of the HERL points out, “The latter option is particularly dangerous for users, as they risk falling out of the wheelchair, injuring themselves or even being hit by a car”.


Fraunhofer IPA has integrated a radar unit in the MeBot, which accurately detects obstacles like stairs and triggers the automated mounting process.

Source: Fraunhofer IPA, Photo credit: Rainer Bez


With three wheel units, the robotic wheelchair known as “MeBot” makes it possible for the first time to climb steps and curbstones.

Source: HERL, Photo credit: Michael Lain

Six-wheeled wheelchairs can get over obstacles bit by bit

The HERL hopes that the MeBot will provide a solution to this issue. The world’s largest research laboratory with a focus on wheelchairs has developed a robotic system which can automatically climb steps and curbs. The base of the robot is a pedestal with six wheels, arranged in pairs. The central and largest wheel unit is for driving, while the forward and rear wheel units are for steering.

All three pairs of wheels can move horizontally and vertically, independently of each other. As soon as the robot detects an obstacle, the first pair of wheels extends, lifting the vehicle. The middle unit then rises independently which lifts the vehicle over the edge. The final pair of wheels then follows suit. Cooper explains that “This mechanism allows the system to mount obstacles, bit by bit – like a caterpillar”.

Radar module allows object recognition, whatever the weather

Expertise in signal recognition and processing is necessary for the MeBot to mount curbs and steps. This is where researchers at Fraunhofer IPA came into play. The team, led by Bernhard Kleiner, Group Manager for Motion Control Systems, has integrated a radar unit which detects objects with a high degree of accuracy and activates the automated process to mount the obstacle. For this to happen, the system emits beams, which measure the height of the step or curb.

This data allows the steering unit to know exactly how the wheelchair needs to be positioned in order to mount the obstacle. If the wheelchair is parallel with the object, the automated mounting process is launched and the step is mounted. Kleiner explains: “We chose a radar measuring unit because, unlike laser or infrared technologies, the system is resistant to environmental influences. Rain, the cold, fog or humidity should not pose a problem”. These features mean that radar systems can be used for many different industrial applications. For example, the IPA scientists have already developed a human detector for robots, as well as other industry 4.0 technologies.

Strengthening international research cooperation

At the Cybathlon, held at ETH Zürich, the MeBot will demonstrate that it is capable of far more than just climbing steps. The demanding course features six obstacles, including narrow doors, a slalom course and ramps. Although it will take several years before the innovation can be put into practice, Kleiner is sure that “HERL’s wheelchair competence combined with our expertise in signal processing means that MeBot is fully capable of maneuvering the chicanes. Our colleagues at the HERL have developed an initial prototype, which we now need to test and make faster”.

The MeBot is not the only innovation being developed jointly by Fraunhofer IPA and the HERL. The two institutes have collaborated in the field of military and civil rehabilitation for many years. Kleiner explains: “HERL experts are focused on wheelchair technologies, whereas we are responsible for drive technology and sensor concepts”. Together, the two partners have worked on a number of developments, including a pneumatically driven wheelchair.

Specialist contact persons:

Bernhard Kleiner (Fraunhofer IPA), Tel. +49 711 970-3718, bernhard.kleiner@ipa.fraunhofer.de

Rory A. Cooper (HERL), Tel. +49 412 822-3700, rcooper@pitt.edu

Weitere Informationen:

http://www.cybathlon.ethz.ch/
http://www.herl.pitt.edu/

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>