Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test runs started for the BorWin2 grid link

13.11.2014
  • Commercial commissioning planned for early 2015
  • Transmission capacity of 800 MW enough to supply 800,000 households

After successful testing, grid operator TenneT and Siemens have now initiated the trial run of the BorWin2 direct current link. After several weeks of trial operation, the grid link will be able to go into controlled operation in the first few months of 2015.


Siemens installed the offshore platform for the BorWin2 grid connection at sea in April 2014. BorWin2 is scheduled to go into operation in 2015. The platform is designed for decades of operation in the rugged North Sea and, once commissioned, will be remotely monitored and controlled from the mainland base.

With a transmission capacity of 800 megawatts (MW), the BorWin2 grid link can supply about 800,000 households with clean electricity. In addition to the HelWin1 facility already undergoing testing, Siemens is currently preparing two additional high-voltage direct current (HVDC) transmission links in the North Sea for commercial operation for TenneT. Siemens received an order for a fifth direct current link in the spring of 2014.

Siemens installed the BorWin2 HVDC platform, located about 100 kilometers northwest of the North Sea island of Borkum, during the summer. Prysmian, a consortium partner and cable expert, was responsible for the installation of two 200-kilometer-long submarine cables.

After successfully installing the platform, numerous commissioning tasks were necessary, at times requiring up to 100 employees to simultaneously work on the platform. After successfully connecting the Global Tech 1 wind farm, the BorWin2 link fed electricity into the grid for the first time in initial tests conducted in early September.

Fifty percent of the grid connection's capacity is planned for another wind farm. Since construction of the wind turbines has not yet begun, TenneT expects that the 800-MW link will be used at only 50 percent capacity for the next two years.

Siemens will utilize HVDC technology, installed both on the offshore platform as well as in the land-based converter station in Diele, East Frisia, to efficiently bring the wind-generated electricity to land. The wind-generated power will first be transported as alternating current to the BorWin2 converter platform, converted there into direct current, and brought to land via submarine cables.

The land-based station converts the direct current back into alternating current and feeds it into the high-voltage grid. For lengths of 80 kilometers or more, HVDC is the only efficient transmission solution with a maximum loss of only 4 percent including the cable.

The HVDC Plus technology used by Siemens is less complex and particularly space-saving, which is absolutely necessary out at sea. In contrast to the classic HVDC technology which is widely used in land connections, systems with HVDC Plus feature self-stabilization. Because fluctuations can occur with wind-based power generation, the use of HVDC Plus technology from Siemens will significantly increase grid reliability.

In all, Siemens is now implementing five North Sea grid connection projects for TenneT. Projects to date are: HelWin1 (576 MW) and HelWin2 (690 MW) off of Helgoland, BorWin2 (800 MW) off of Borkum and SylWin1 (864 MW) off of Sylt. Siemens received the contract for the BorWin3 link in the spring of 2014; the four other grid link projects are in the advanced stages of completion and will successively go into operation between 2014 and 2015.

For further information on Energy Management Division, please see www.siemens.com/energy-management

For further information on grid access, please see
www.siemens.com/press/x-win


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 357,000 employees worldwide. Further information is available on the Internet at www.siemens.com .

Reference Number: PR2014110055EMEN


Contact
Ms. Sabrina Martin
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 18-7032

sabrina.martin​@siemens.com

Sabrina Martin | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>