Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test runs started for the BorWin2 grid link

13.11.2014
  • Commercial commissioning planned for early 2015
  • Transmission capacity of 800 MW enough to supply 800,000 households

After successful testing, grid operator TenneT and Siemens have now initiated the trial run of the BorWin2 direct current link. After several weeks of trial operation, the grid link will be able to go into controlled operation in the first few months of 2015.


Siemens installed the offshore platform for the BorWin2 grid connection at sea in April 2014. BorWin2 is scheduled to go into operation in 2015. The platform is designed for decades of operation in the rugged North Sea and, once commissioned, will be remotely monitored and controlled from the mainland base.

With a transmission capacity of 800 megawatts (MW), the BorWin2 grid link can supply about 800,000 households with clean electricity. In addition to the HelWin1 facility already undergoing testing, Siemens is currently preparing two additional high-voltage direct current (HVDC) transmission links in the North Sea for commercial operation for TenneT. Siemens received an order for a fifth direct current link in the spring of 2014.

Siemens installed the BorWin2 HVDC platform, located about 100 kilometers northwest of the North Sea island of Borkum, during the summer. Prysmian, a consortium partner and cable expert, was responsible for the installation of two 200-kilometer-long submarine cables.

After successfully installing the platform, numerous commissioning tasks were necessary, at times requiring up to 100 employees to simultaneously work on the platform. After successfully connecting the Global Tech 1 wind farm, the BorWin2 link fed electricity into the grid for the first time in initial tests conducted in early September.

Fifty percent of the grid connection's capacity is planned for another wind farm. Since construction of the wind turbines has not yet begun, TenneT expects that the 800-MW link will be used at only 50 percent capacity for the next two years.

Siemens will utilize HVDC technology, installed both on the offshore platform as well as in the land-based converter station in Diele, East Frisia, to efficiently bring the wind-generated electricity to land. The wind-generated power will first be transported as alternating current to the BorWin2 converter platform, converted there into direct current, and brought to land via submarine cables.

The land-based station converts the direct current back into alternating current and feeds it into the high-voltage grid. For lengths of 80 kilometers or more, HVDC is the only efficient transmission solution with a maximum loss of only 4 percent including the cable.

The HVDC Plus technology used by Siemens is less complex and particularly space-saving, which is absolutely necessary out at sea. In contrast to the classic HVDC technology which is widely used in land connections, systems with HVDC Plus feature self-stabilization. Because fluctuations can occur with wind-based power generation, the use of HVDC Plus technology from Siemens will significantly increase grid reliability.

In all, Siemens is now implementing five North Sea grid connection projects for TenneT. Projects to date are: HelWin1 (576 MW) and HelWin2 (690 MW) off of Helgoland, BorWin2 (800 MW) off of Borkum and SylWin1 (864 MW) off of Sylt. Siemens received the contract for the BorWin3 link in the spring of 2014; the four other grid link projects are in the advanced stages of completion and will successively go into operation between 2014 and 2015.

For further information on Energy Management Division, please see www.siemens.com/energy-management

For further information on grid access, please see
www.siemens.com/press/x-win


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 357,000 employees worldwide. Further information is available on the Internet at www.siemens.com .

Reference Number: PR2014110055EMEN


Contact
Ms. Sabrina Martin
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 18-7032

sabrina.martin​@siemens.com

Sabrina Martin | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>