Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test runs started for the BorWin2 grid link

13.11.2014
  • Commercial commissioning planned for early 2015
  • Transmission capacity of 800 MW enough to supply 800,000 households

After successful testing, grid operator TenneT and Siemens have now initiated the trial run of the BorWin2 direct current link. After several weeks of trial operation, the grid link will be able to go into controlled operation in the first few months of 2015.


Siemens installed the offshore platform for the BorWin2 grid connection at sea in April 2014. BorWin2 is scheduled to go into operation in 2015. The platform is designed for decades of operation in the rugged North Sea and, once commissioned, will be remotely monitored and controlled from the mainland base.

With a transmission capacity of 800 megawatts (MW), the BorWin2 grid link can supply about 800,000 households with clean electricity. In addition to the HelWin1 facility already undergoing testing, Siemens is currently preparing two additional high-voltage direct current (HVDC) transmission links in the North Sea for commercial operation for TenneT. Siemens received an order for a fifth direct current link in the spring of 2014.

Siemens installed the BorWin2 HVDC platform, located about 100 kilometers northwest of the North Sea island of Borkum, during the summer. Prysmian, a consortium partner and cable expert, was responsible for the installation of two 200-kilometer-long submarine cables.

After successfully installing the platform, numerous commissioning tasks were necessary, at times requiring up to 100 employees to simultaneously work on the platform. After successfully connecting the Global Tech 1 wind farm, the BorWin2 link fed electricity into the grid for the first time in initial tests conducted in early September.

Fifty percent of the grid connection's capacity is planned for another wind farm. Since construction of the wind turbines has not yet begun, TenneT expects that the 800-MW link will be used at only 50 percent capacity for the next two years.

Siemens will utilize HVDC technology, installed both on the offshore platform as well as in the land-based converter station in Diele, East Frisia, to efficiently bring the wind-generated electricity to land. The wind-generated power will first be transported as alternating current to the BorWin2 converter platform, converted there into direct current, and brought to land via submarine cables.

The land-based station converts the direct current back into alternating current and feeds it into the high-voltage grid. For lengths of 80 kilometers or more, HVDC is the only efficient transmission solution with a maximum loss of only 4 percent including the cable.

The HVDC Plus technology used by Siemens is less complex and particularly space-saving, which is absolutely necessary out at sea. In contrast to the classic HVDC technology which is widely used in land connections, systems with HVDC Plus feature self-stabilization. Because fluctuations can occur with wind-based power generation, the use of HVDC Plus technology from Siemens will significantly increase grid reliability.

In all, Siemens is now implementing five North Sea grid connection projects for TenneT. Projects to date are: HelWin1 (576 MW) and HelWin2 (690 MW) off of Helgoland, BorWin2 (800 MW) off of Borkum and SylWin1 (864 MW) off of Sylt. Siemens received the contract for the BorWin3 link in the spring of 2014; the four other grid link projects are in the advanced stages of completion and will successively go into operation between 2014 and 2015.

For further information on Energy Management Division, please see www.siemens.com/energy-management

For further information on grid access, please see
www.siemens.com/press/x-win


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 357,000 employees worldwide. Further information is available on the Internet at www.siemens.com .

Reference Number: PR2014110055EMEN


Contact
Ms. Sabrina Martin
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 18-7032

sabrina.martin​@siemens.com

Sabrina Martin | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>