Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tampering the current in a petri dish

19.05.2016

Electricity plays a key role in cell studies, but practical issues linked with the shape of the laboratory cultureware have troubled this research. Laboratory cultureware are the plastic containers used by researchers to grow cells. These containers are typically shallow cylinders: a classic example is a petri dish.

While a petri dish is circular, the simplest way to create a uniform electric field is based on a rectangular shape. These different geometries prevent scientists to fully exploit the potential of a cell cultureware, as a significant part of the round petri dish base remains outside the field-generating rectangle that goes into the cultureware. A PhD student's project, which has led to a patent application and a published article in Scientific Reports, is radically changing this situation.


Testing the performance of the device.

Credit:

The student, Hsieh-Fu Tsai, worked under the supervision of Prof Amy Shen, head of the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). His research project focused on cell behaviour in an electric field.

"Cells respond to electric current," Tsai explained. "Some cells migrate towards the positive pole, while others towards the negative pole, and some cells show a specific alignment with the electric field." These phenomena are known to play an important role in key biomedical areas, like wound healing and the early stages of cell development, such as neurogenesis and embryogenesis.

Scientists typically choose to study cells in a uniform electric field, as such an even field is the simplest case to work with in a controlled setting. An effective way to create a uniform electrical field is through a rectangular device, because the electric poles are connected to two of the opposite sides of the rectangle, and thus the pathways of the electric current are all of the same length.

However, most standard cell cultures happen in a circular shaped environment, like a petri dish, and it is not possible to directly create a uniform electric field just connecting electric poles to the opposite sides of a circle. "The walls of a petri dish are curved," Prof Shen commented, "and in a circle the pathways of the electric current are of different lengths, so the resulting electric field is not uniform."

Tsai and colleagues found a revolutionary solution to this problem. They created a plastic insert that modifies the pathways of the electric current in a circular shape, making each current path of the same distance. The insert, simple and inexpensive, achieves this goal by making the shorter pathways running inside the device itself, and thus extending their length until they match the longer pathways.

The insert has four holes on top: two holes for providing cells with nutrient, and two holes for applying electricity. First, the researchers lay cells on the bottom of a petri dish. Then, the insert is placed into the cultureware and sealed in place. Finally, the scientists add fresh nutrient for the cells to grow and apply the electrical current.

The design of the insert is based on the fundamental principles of electricity, which helped the researchers in finding the optimal shape of the device. Once the shape is defined, the insert can be directly created with a 3D printer. Thanks to this simple process, the insert is scalable and can be easily adapted to fit most of the common laboratory cultureware of any size. OIST scientists have already tested the performance of the device through a successful experiment on mouse embryonic fibroblast cells.

"One of the advantages is that, with this device, researchers can use most of the surface coverage of the dish," Prof Shen said. "This results in higher cell count, and thus in more samples for further experiments."

There are several applications for this device in cells studies. "This time we were specifically aiming for tissue applications, because many researchers are trying to create functional body tissues in the lab; for example, muscle, skin, and liver," Tsai explained. "You can grow these tissues, but frequently they do not have the function that you see in the body. That's because they are not mature yet: they need training, like a muscle needs exercise. An electric field is one of the training method scientists are trying to use on cells." The project has already generated contacts with the tissue engineering industry.

Notably, Tsai developed this project during a three-month lab rotation that is part of the standard curriculum at OIST. PhD students work in three different laboratories during their first year, exploring the diversity of scientific research. This model, possibly unique in the tertiary education landscape, is proving itself successful and effective in fostering innovation.

###

The research was interdisciplinary and done in collaboration with Prof Tadashi Yamamoto, leader of OIST Cell Signal Unit, and Dr Ji-Yen Cheng's group from Academia Sinica in Taiwan

Kaoru Natori | EurekAlert!

Further reports about: 3D printer cell development electric field electricity

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>