Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tampering the current in a petri dish

19.05.2016

Electricity plays a key role in cell studies, but practical issues linked with the shape of the laboratory cultureware have troubled this research. Laboratory cultureware are the plastic containers used by researchers to grow cells. These containers are typically shallow cylinders: a classic example is a petri dish.

While a petri dish is circular, the simplest way to create a uniform electric field is based on a rectangular shape. These different geometries prevent scientists to fully exploit the potential of a cell cultureware, as a significant part of the round petri dish base remains outside the field-generating rectangle that goes into the cultureware. A PhD student's project, which has led to a patent application and a published article in Scientific Reports, is radically changing this situation.


Testing the performance of the device.

Credit:

The student, Hsieh-Fu Tsai, worked under the supervision of Prof Amy Shen, head of the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). His research project focused on cell behaviour in an electric field.

"Cells respond to electric current," Tsai explained. "Some cells migrate towards the positive pole, while others towards the negative pole, and some cells show a specific alignment with the electric field." These phenomena are known to play an important role in key biomedical areas, like wound healing and the early stages of cell development, such as neurogenesis and embryogenesis.

Scientists typically choose to study cells in a uniform electric field, as such an even field is the simplest case to work with in a controlled setting. An effective way to create a uniform electrical field is through a rectangular device, because the electric poles are connected to two of the opposite sides of the rectangle, and thus the pathways of the electric current are all of the same length.

However, most standard cell cultures happen in a circular shaped environment, like a petri dish, and it is not possible to directly create a uniform electric field just connecting electric poles to the opposite sides of a circle. "The walls of a petri dish are curved," Prof Shen commented, "and in a circle the pathways of the electric current are of different lengths, so the resulting electric field is not uniform."

Tsai and colleagues found a revolutionary solution to this problem. They created a plastic insert that modifies the pathways of the electric current in a circular shape, making each current path of the same distance. The insert, simple and inexpensive, achieves this goal by making the shorter pathways running inside the device itself, and thus extending their length until they match the longer pathways.

The insert has four holes on top: two holes for providing cells with nutrient, and two holes for applying electricity. First, the researchers lay cells on the bottom of a petri dish. Then, the insert is placed into the cultureware and sealed in place. Finally, the scientists add fresh nutrient for the cells to grow and apply the electrical current.

The design of the insert is based on the fundamental principles of electricity, which helped the researchers in finding the optimal shape of the device. Once the shape is defined, the insert can be directly created with a 3D printer. Thanks to this simple process, the insert is scalable and can be easily adapted to fit most of the common laboratory cultureware of any size. OIST scientists have already tested the performance of the device through a successful experiment on mouse embryonic fibroblast cells.

"One of the advantages is that, with this device, researchers can use most of the surface coverage of the dish," Prof Shen said. "This results in higher cell count, and thus in more samples for further experiments."

There are several applications for this device in cells studies. "This time we were specifically aiming for tissue applications, because many researchers are trying to create functional body tissues in the lab; for example, muscle, skin, and liver," Tsai explained. "You can grow these tissues, but frequently they do not have the function that you see in the body. That's because they are not mature yet: they need training, like a muscle needs exercise. An electric field is one of the training method scientists are trying to use on cells." The project has already generated contacts with the tissue engineering industry.

Notably, Tsai developed this project during a three-month lab rotation that is part of the standard curriculum at OIST. PhD students work in three different laboratories during their first year, exploring the diversity of scientific research. This model, possibly unique in the tertiary education landscape, is proving itself successful and effective in fostering innovation.

###

The research was interdisciplinary and done in collaboration with Prof Tadashi Yamamoto, leader of OIST Cell Signal Unit, and Dr Ji-Yen Cheng's group from Academia Sinica in Taiwan

Kaoru Natori | EurekAlert!

Further reports about: 3D printer cell development electric field electricity

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>