Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tampering the current in a petri dish

19.05.2016

Electricity plays a key role in cell studies, but practical issues linked with the shape of the laboratory cultureware have troubled this research. Laboratory cultureware are the plastic containers used by researchers to grow cells. These containers are typically shallow cylinders: a classic example is a petri dish.

While a petri dish is circular, the simplest way to create a uniform electric field is based on a rectangular shape. These different geometries prevent scientists to fully exploit the potential of a cell cultureware, as a significant part of the round petri dish base remains outside the field-generating rectangle that goes into the cultureware. A PhD student's project, which has led to a patent application and a published article in Scientific Reports, is radically changing this situation.


Testing the performance of the device.

Credit:

The student, Hsieh-Fu Tsai, worked under the supervision of Prof Amy Shen, head of the Micro/Bio/Nanofluidics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST). His research project focused on cell behaviour in an electric field.

"Cells respond to electric current," Tsai explained. "Some cells migrate towards the positive pole, while others towards the negative pole, and some cells show a specific alignment with the electric field." These phenomena are known to play an important role in key biomedical areas, like wound healing and the early stages of cell development, such as neurogenesis and embryogenesis.

Scientists typically choose to study cells in a uniform electric field, as such an even field is the simplest case to work with in a controlled setting. An effective way to create a uniform electrical field is through a rectangular device, because the electric poles are connected to two of the opposite sides of the rectangle, and thus the pathways of the electric current are all of the same length.

However, most standard cell cultures happen in a circular shaped environment, like a petri dish, and it is not possible to directly create a uniform electric field just connecting electric poles to the opposite sides of a circle. "The walls of a petri dish are curved," Prof Shen commented, "and in a circle the pathways of the electric current are of different lengths, so the resulting electric field is not uniform."

Tsai and colleagues found a revolutionary solution to this problem. They created a plastic insert that modifies the pathways of the electric current in a circular shape, making each current path of the same distance. The insert, simple and inexpensive, achieves this goal by making the shorter pathways running inside the device itself, and thus extending their length until they match the longer pathways.

The insert has four holes on top: two holes for providing cells with nutrient, and two holes for applying electricity. First, the researchers lay cells on the bottom of a petri dish. Then, the insert is placed into the cultureware and sealed in place. Finally, the scientists add fresh nutrient for the cells to grow and apply the electrical current.

The design of the insert is based on the fundamental principles of electricity, which helped the researchers in finding the optimal shape of the device. Once the shape is defined, the insert can be directly created with a 3D printer. Thanks to this simple process, the insert is scalable and can be easily adapted to fit most of the common laboratory cultureware of any size. OIST scientists have already tested the performance of the device through a successful experiment on mouse embryonic fibroblast cells.

"One of the advantages is that, with this device, researchers can use most of the surface coverage of the dish," Prof Shen said. "This results in higher cell count, and thus in more samples for further experiments."

There are several applications for this device in cells studies. "This time we were specifically aiming for tissue applications, because many researchers are trying to create functional body tissues in the lab; for example, muscle, skin, and liver," Tsai explained. "You can grow these tissues, but frequently they do not have the function that you see in the body. That's because they are not mature yet: they need training, like a muscle needs exercise. An electric field is one of the training method scientists are trying to use on cells." The project has already generated contacts with the tissue engineering industry.

Notably, Tsai developed this project during a three-month lab rotation that is part of the standard curriculum at OIST. PhD students work in three different laboratories during their first year, exploring the diversity of scientific research. This model, possibly unique in the tertiary education landscape, is proving itself successful and effective in fostering innovation.

###

The research was interdisciplinary and done in collaboration with Prof Tadashi Yamamoto, leader of OIST Cell Signal Unit, and Dr Ji-Yen Cheng's group from Academia Sinica in Taiwan

Kaoru Natori | EurekAlert!

Further reports about: 3D printer cell development electric field electricity

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>