Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting material limits short-circuit currents

19.02.2015

Siemens develops superconducting fault current limiters for limiting short-circuit currents in the grid.

Superconductors show zero resistance below the critical temperature and below the critical current. They are thus more energy efficient than conventional series reactors.

Despite the fact that superconducting components require cooling, the technology can help to reduce the power losses by half compared to the losses caused by currently usedseries reactors. Siemens will test the new superconducting fault current limiter in cooperation with the Augsburg municipal utility company and install a prototype in the grid by the end of 2015.

With the increase of renewable energy production, more and more biogas and solar facilities and wind farms are feeding energy directly into the medium-voltage power grid. Short circuits could thus cause high currents and require the installation of protective components. Series reactors alone, which damp short-circuit currents like a resistor, would not offer a solution.

They not only act as resistors when there is a short circuit, but also during normal operation. This causes electricity to be continuously wasted. The power loss typically amounts to 25 kilowatts per series reactor coil. Experts estimate that up to 44,000 series reactors are installed worldwide. That translates into a global power loss of up to 1,100 megawatts, which is the equivalent of a large power plant's output.

No resistance at minus 196 degrees

Superconductors solve that issue, because they can transport electricity with no resistance and almost no loss at low temperatures and below the critical current. They are in some sense "invisible" in the grid. The scientists at Siemens Corporate Technology have been researching high-temperature superconductors for more than 20 years now and have several key patents for resistive superconducting fault current limiters.

The scientists are using ceramic high-temperature superconductors made of yttrium-barium copper oxide, which are cooled down to minus 196 degrees Celsius with liquid nitrogen. If a short circuit occurs, the current increases strongly, and when reaching the critical current value of the superconductor, it will cause the superconductor to lose its superconducting properties and suddenly turn into a resistor.

The superconducting current limiter prototype will be combined with a series reactor, through which the short-circuit current will then be rerouted. That way the superconductor can cool off so that it will automatically be usable again a short time later.

In Augsburg, the current limiter will be installed between the grid of the Augsburg municipal utility company and a facility operated by MTU onsite energy. MTU manufactures cogeneration plants. While testing these, MTU feeds the produced electricity into the Augsburg grid.

The tests sometimes achieve peak outputs of 15 megawatts. Siemens plans to monitor the new technology for about one year, but both partners aim for a permanent installation even after the formal duration of the project. The cooperation project receives support from the Bavarian Ministry of Economics.

Press Picture: http://www.siemens.com/press/en/presspicture/?press=/en/presspicture/innovationn...

Weitere Informationen:

http://www.siemenscom/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>