Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Superconducting material limits short-circuit currents

19.02.2015

Siemens develops superconducting fault current limiters for limiting short-circuit currents in the grid.

Superconductors show zero resistance below the critical temperature and below the critical current. They are thus more energy efficient than conventional series reactors.

Despite the fact that superconducting components require cooling, the technology can help to reduce the power losses by half compared to the losses caused by currently usedseries reactors. Siemens will test the new superconducting fault current limiter in cooperation with the Augsburg municipal utility company and install a prototype in the grid by the end of 2015.

With the increase of renewable energy production, more and more biogas and solar facilities and wind farms are feeding energy directly into the medium-voltage power grid. Short circuits could thus cause high currents and require the installation of protective components. Series reactors alone, which damp short-circuit currents like a resistor, would not offer a solution.

They not only act as resistors when there is a short circuit, but also during normal operation. This causes electricity to be continuously wasted. The power loss typically amounts to 25 kilowatts per series reactor coil. Experts estimate that up to 44,000 series reactors are installed worldwide. That translates into a global power loss of up to 1,100 megawatts, which is the equivalent of a large power plant's output.

No resistance at minus 196 degrees

Superconductors solve that issue, because they can transport electricity with no resistance and almost no loss at low temperatures and below the critical current. They are in some sense "invisible" in the grid. The scientists at Siemens Corporate Technology have been researching high-temperature superconductors for more than 20 years now and have several key patents for resistive superconducting fault current limiters.

The scientists are using ceramic high-temperature superconductors made of yttrium-barium copper oxide, which are cooled down to minus 196 degrees Celsius with liquid nitrogen. If a short circuit occurs, the current increases strongly, and when reaching the critical current value of the superconductor, it will cause the superconductor to lose its superconducting properties and suddenly turn into a resistor.

The superconducting current limiter prototype will be combined with a series reactor, through which the short-circuit current will then be rerouted. That way the superconductor can cool off so that it will automatically be usable again a short time later.

In Augsburg, the current limiter will be installed between the grid of the Augsburg municipal utility company and a facility operated by MTU onsite energy. MTU manufactures cogeneration plants. While testing these, MTU feeds the produced electricity into the Augsburg grid.

The tests sometimes achieve peak outputs of 15 megawatts. Siemens plans to monitor the new technology for about one year, but both partners aim for a permanent installation even after the formal duration of the project. The cooperation project receives support from the Bavarian Ministry of Economics.

Press Picture: http://www.siemens.com/press/en/presspicture/?press=/en/presspicture/innovationn...

Weitere Informationen:

http://www.siemenscom/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>