Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Super yeast' has the power to improve economics of biofuels

18.10.2016

Scientists at the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center (GLBRC) have found a way to nearly double the efficiency with which a commonly used industrial yeast strain converts plant sugars to biofuel. The newly engineered "super yeast" could boost the economics of making ethanol, specialty biofuels and bioproducts.

Though Saccharomyces cerevisiae has been the baker's and brewer's yeast of choice for centuries, it poses a unique challenge to researchers using it to make biofuel from cellulosic biomass such as grasses, woods, or the nonfood portion of plants.


Great Lakes Bioenergy Research Center researcher Trey Sato monitors yeast cultures in the lab. Sato and UW-Madison colleagues have engineered yeast to feast on a previously unpalatable sugar, potentially improving the microorganism's ability to convert sugars to useful biofuels.

Credit: James Runde/Wisconsin Energy Institute

The world-famous microbe is highly adept at converting a plant's glucose to biofuel but is otherwise a picky eater, ignoring the plant's xylose, a five-carbon sugar that can make up nearly half of all available plant sugars.

"For cellulosic biofuels to become economically feasible, microbes need to be able to convert all of a plant's sugars, including xylose, into fuel," says Trey Sato, the GLBRC study's lead researcher and a UW-Madison associate scientist.

In a study published Friday (Oct. 14, 2016) in the journal PLOS Genetics, Sato and his GLBRC collaborators describe the isolation of specific genetic mutations that allow S. cerevisiae to convert xylose into ethanol, a finding that could transform xylose from a waste product into a source of fuel.

To uncover these genetic mutations, the researchers had to untangle millions of years of evolution, teasing out what led S. cerevisiae to become so selective in its eating habits in the first place.

First, Sato and colleagues gave the yeast a choice akin to eating carrots for dinner or nothing at all, surrounding S. cerevisiae with xylose until it either reevaluated its distaste for xylose or died. It took 10 months and hundreds of generations of "directed evolution" for Sato and his colleagues, including co-corresponding authors Robert Landick, a UW-Madison professor of biochemistry, and Audrey Gasch, a UW- Madison professor of genetics, to create a strain of S. cerevisiae that could ferment xylose.

Once the researchers had isolated the super yeast they named GLBRCY128, they also needed to understand exactly how the evolution had occurred in order to replicate it. Gasch compared Y128's genome to the original strain, combing through the approximately 5,200 genes of each to find four gene mutations responsible for the adapted behavior. To verify their finding, the researchers manually deleted these mutations from the parent strain, producing the same result.

Sato says this work could enable a wide variety of biofuels research going forward. With the technique for making Y128 published, researchers are free to make it themselves for the purposes of applying it to new biomass pretreatment technologies or to different plant materials. "Scientists won't need to adapt their research to the process that we're doing here," he says. "They can just take our technology and make their own strain."

Future research may also focus on the super yeast's potentially powerful role in creating specialty biofuels and bioproducts.

"We want to take this strain and make higher-order molecules that can be further converted into jet fuels or something like isobutanol, lipids or diesel fuel," says Sato. "And if we know how to better metabolize carbon, including xylose, anybody in theory should be able to rewire or change metabolic pathways to produce a variety of biofuel products."

--Mark E. Griffin, (608) 890-2168, mark.griffin@wisc.edu

DOWNLOAD PHOTOS: https://uwmadison.box.com/v/super-yeast

Trey Sato | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>