Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-resolution microscope builds 3-D images by mapping negative space

06.09.2016

Scientists at The University of Texas at Austin have demonstrated a method for making three-dimensional images of structures in biological material under natural conditions at a much higher resolution than other existing methods. The method may help shed light on how cells communicate with one another and provide important insights for engineers working to develop artificial organs such as skin or heart tissue.

The research is described today in the journal Nature Communications.


Scientists at The University of Texas at Austin have developed a new microscopy technique for looking at nanoscale structures in biological samples that is analogous to using a glowing rubber ball to image a chair in a dark room.

Illustration by Jenna Luecke

The scientists, led by physicist Ernst-Ludwig Florin, used their method, called thermal noise imaging, to capture nanometer-scale images of networks of collagen fibrils, which form part of the connective tissue found in the skin of animals. A nanometer is a billionth of a meter or about one-hundred-thousandth of the width of a human hair. Examining collagen fibrils at this scale allowed the scientists to measure for the first time key properties that affect skin's elasticity, something that could lead to improved designs for artificial skin or tissues.

Taking crisp 3-D images of nanoscale structures in biological samples is extremely difficult, in part because they tend to be soft and bathed in liquid. This means that tiny fluctuations in heat cause structures to move back and forth, an effect known as Brownian motion.

To overcome the blurriness that this creates, other super-resolution imaging techniques often "fix" biological samples by adding chemicals that stiffen various structures, in which case, materials lose their natural mechanical properties. Scientists can sometimes overcome blurriness without fixing the samples if, for example, they focus on rigid structures stuck to a glass surface, but that severely limits the kinds of structures and configurations they can study.

Florin and his team took a different approach. To make an image, they add nanospheres - nanometer-sized beads that reflect laser light - to their biological samples under natural conditions, shine a laser on the sample and compile superfast snapshots of the nanospheres viewed through a light microscope.

The scientists explain that the method, thermal noise imaging, works something like this analogy: Imagine you needed to take a three-dimensional image of a room in total darkness. If you were to throw a glowing rubber ball into the room and use a camera to collect a series of high-speed images of the ball as it bounces around, you would see that as the ball moves around the room, it isn't able to move through solid objects such as tables and chairs. Combining millions of images taken so fast that they don't blur, you would be able to build a picture of where there are objects (wherever the ball couldn't go) and where there aren't objects (where it could go).

In thermal noise imaging, the equivalent of the rubber ball is a nanosphere that moves around in a sample by natural Brownian motion - the same unruly force that has bedeviled other microscopy methods.

"This chaotic wiggling is a nuisance for most microscopy techniques because it makes everything blurry," says Florin. "We've turned it to our advantage. We don't need to build a complicated mechanism to move our probe around. We sit back and let nature do it for us."

The original concept for the thermal noise imaging technique was published and patented in 2001, but technical challenges prevented it from being developed into a fully functioning process until now.

The tool allowed the researchers to measure for the first time the mechanical properties of collagen fibrils in a network. Collagen is a biopolymer that forms scaffolds for cells in the skin and contributes to the skin's elasticity. Scientists are still not sure how a collagen network's architecture results in its elasticity, an important question that must be answered for the rational design of artificial skin.

"If you want to build artificial skin, you have to understand how the natural components work," says Florin. "You could then better design a collagen network that acts as a scaffolding that encourages cells to grow in the right way."

###

The paper's first author is Tobias Bartsch, a former graduate student at UT Austin and currently a postdoctoral associate at The Rockefeller University. Other co-authors are Martin Kochanczyk, Emanuel Lissek and Janina Lange.

Funding for this research was provided by the National Science Foundation and the Simons Foundation.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>