Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Super-resolution microscope builds 3-D images by mapping negative space

06.09.2016

Scientists at The University of Texas at Austin have demonstrated a method for making three-dimensional images of structures in biological material under natural conditions at a much higher resolution than other existing methods. The method may help shed light on how cells communicate with one another and provide important insights for engineers working to develop artificial organs such as skin or heart tissue.

The research is described today in the journal Nature Communications.


Scientists at The University of Texas at Austin have developed a new microscopy technique for looking at nanoscale structures in biological samples that is analogous to using a glowing rubber ball to image a chair in a dark room.

Illustration by Jenna Luecke

The scientists, led by physicist Ernst-Ludwig Florin, used their method, called thermal noise imaging, to capture nanometer-scale images of networks of collagen fibrils, which form part of the connective tissue found in the skin of animals. A nanometer is a billionth of a meter or about one-hundred-thousandth of the width of a human hair. Examining collagen fibrils at this scale allowed the scientists to measure for the first time key properties that affect skin's elasticity, something that could lead to improved designs for artificial skin or tissues.

Taking crisp 3-D images of nanoscale structures in biological samples is extremely difficult, in part because they tend to be soft and bathed in liquid. This means that tiny fluctuations in heat cause structures to move back and forth, an effect known as Brownian motion.

To overcome the blurriness that this creates, other super-resolution imaging techniques often "fix" biological samples by adding chemicals that stiffen various structures, in which case, materials lose their natural mechanical properties. Scientists can sometimes overcome blurriness without fixing the samples if, for example, they focus on rigid structures stuck to a glass surface, but that severely limits the kinds of structures and configurations they can study.

Florin and his team took a different approach. To make an image, they add nanospheres - nanometer-sized beads that reflect laser light - to their biological samples under natural conditions, shine a laser on the sample and compile superfast snapshots of the nanospheres viewed through a light microscope.

The scientists explain that the method, thermal noise imaging, works something like this analogy: Imagine you needed to take a three-dimensional image of a room in total darkness. If you were to throw a glowing rubber ball into the room and use a camera to collect a series of high-speed images of the ball as it bounces around, you would see that as the ball moves around the room, it isn't able to move through solid objects such as tables and chairs. Combining millions of images taken so fast that they don't blur, you would be able to build a picture of where there are objects (wherever the ball couldn't go) and where there aren't objects (where it could go).

In thermal noise imaging, the equivalent of the rubber ball is a nanosphere that moves around in a sample by natural Brownian motion - the same unruly force that has bedeviled other microscopy methods.

"This chaotic wiggling is a nuisance for most microscopy techniques because it makes everything blurry," says Florin. "We've turned it to our advantage. We don't need to build a complicated mechanism to move our probe around. We sit back and let nature do it for us."

The original concept for the thermal noise imaging technique was published and patented in 2001, but technical challenges prevented it from being developed into a fully functioning process until now.

The tool allowed the researchers to measure for the first time the mechanical properties of collagen fibrils in a network. Collagen is a biopolymer that forms scaffolds for cells in the skin and contributes to the skin's elasticity. Scientists are still not sure how a collagen network's architecture results in its elasticity, an important question that must be answered for the rational design of artificial skin.

"If you want to build artificial skin, you have to understand how the natural components work," says Florin. "You could then better design a collagen network that acts as a scaffolding that encourages cells to grow in the right way."

###

The paper's first author is Tobias Bartsch, a former graduate student at UT Austin and currently a postdoctoral associate at The Rockefeller University. Other co-authors are Martin Kochanczyk, Emanuel Lissek and Janina Lange.

Funding for this research was provided by the National Science Foundation and the Simons Foundation.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>