Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Streams can be sensors

02.01.2018

Scientists at Michigan State University have shown that streams can be key health indicators of a region's landscape, but the way they're being monitored can be improved.

New research featured in Ecology Letters showcases how streams can be used as sensors to diagnose a watershed's sensitivity or resiliency to changes in land use practices, including the long-term use of fertilizers. Using streams as sensors - specifically, near the headwaters - can allow scientists, land-use managers and farmers to diagnose which watersheds can be more sustainably developed for food production, said Jay Zarnetske, MSU earth and environmental scientist and co-author of the study.


Scientists at Michigan State University have shown that streams can be key health indicators of a region's landscape, but the way they're being monitored can be improved.

Credit: Photo by Ben Abbott

"We were surprised to see that the streams were good sensors of long-term nutrient conditions," he said. "Our methods show that we can learn much from a relatively small number of samples if they are collected more strategically than current watershed management practices dictate. This understanding is critical in protecting aquatic ecosystems and ensuring human water security."

Human activity, especially agriculture, has polluted freshwater ecosystems across the planet, causing massive ecological and economic damage. Excess nutrients from fertilizer and fossil fuel can trigger toxic cyanobacteria blooms and expansive hypoxic dead zones, undermining the capacity of ecosystems to provide the food and water that sustains human societies, Zarnetske added.

For the study, Ben Abbott, formerly at MSU and now at Brigham Young University, led an international team in a culturally and historically important region of France. The area, which has seen nearly a millennium of agricultural activity, serves as a model as to how increasing use of nitrogen and phosphorous fertilizers are having lasting impacts on watersheds.

"The manipulation of phosphorous and nitrogen in the landscape is one of the greatest threats to the fate of humanity and the rest of life on this planet," Zarnetske said. "Most people have no idea that the human manipulation of the phosphorous and nitrogen cycles is occurring, is affecting nearly every place on the planet and is one of, if not the greatest, current threat to the fate of humanity."

There are dramatic aerial photos of algal blooms growing at the mouth of streams flowing into bodies of water, such as Lake Erie. However, most carbon and nutrients enter waterways upstream, at the headwaters. So rather than try to diagnose problems at the mouth, a more efficient way to address the issue would be to sample many areas closer to the headwaters.

"Basically, instead of standing in a large stream far from the headwaters and observing what flows past us through time," Zarnetske said, "we illustrate that it can be much more informative to periodically travel around the region and grab samples from the smallest to the largest streams in the watershed."

The team found that each small stream's chemistry fluctuated widely due to changes in temperature, water flow and other factors. There was order to the variability, however, as there was synchrony in the behavior of each small stream and its role in the chemistry of the larger river system.

"That was unexpected," Abbott said. "Somewhat surprisingly, we found that a single sampling of headwaters any time of year provides a lot of information about where nutrients are coming from and where to target restoration efforts."

Future research will apply these methods globally, to different agricultural watersheds and forested landscapes experiencing changing precipitation patterns. For example, Zarnetske will study headwaters in the Pacific Northwest and the rapidly warming and thawing landscapes in the Arctic.

The new methods also can help direct efforts in selecting the most appropriate locations for sustainable agricultural land and development or identifying watershed responses to global warming, such as those in the Arctic.

Arctic landscapes, where soils are predominantly frozen, are rapidly thawing due to rapid climatic warming. As Arctic ice and permafrost melt, they release sediment and nutrients into rivers and seas. While the effects of these increasingly turbid waters and nutrients are unknown, their new approach can develop a baseline to begin monitoring their impact.

###

Additional researchers from Université de Rennes and University François-Rabelais Tours made key contributions to this study.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Silicon as a new storage material for the batteries of the future
24.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>