Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steering a fusion plasma toward stability

28.10.2016

News from the 58th Annual Meeting of the APS Division of Plasma Physics

Plasmas in fusion-energy producing devices are gases heated to millions of degrees that can carry millions of amperes of current. These superhot plasmas must be kept away from material surfaces of the vacuum vessel that contains them by using strong magnetic fields. When the gas becomes unstable it can touch the chambers' walls, quickly cooling the plasma and disrupting fusion reactions.


Stability map of fusion plasma in NSTX. Blue is stable and red is unstable. As the plasma decreases collisionality and increases rotation in time it transitions into an unstable region.

Credit: Princeton Plasma Physics Laboratory

Such disruption could potentially harm the walls of future fusion-producing devices. Drs. Jack Berkery and Steve Sabbagh from Columbia University, who work at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL), have developed a potential way to avoid these instabilities.

Fusion scientists previously thought that making the plasma rotate would stabilize the plasma, but Sabbagh and Berkery discovered that there is a more complicated connection between rotation and stability. Some plasmas can become unstable when they rotate too fast, while others can maintain stability at lower rotation rates.

When plasma rotation is kept in a favorable range, the charged plasma particles bouncing back and forth in the magnetic field can actually steal some of the energy from the rotational motion, which helps stabilize the plasma. A similar stability condition applies to the frequency with which particles collide and bounce off one another, a property termed their collisionality.

Berkery and Sabbagh found that reduced collisionality, as will be found in future fusion plasmas, does not necessarily lead to reduced stability, overturning long-held beliefs on the effect of collisions on stability.

Using these ideas, the scientists developed a "stability map" that allows a plasma to be monitored in real-time -- with 1/1000 of a second resolution -- to determine whether it is stable and how close it is to being unstable. If you know how fast the plasma is rotating and the collisionality, you can use the stability map to see if the plasma is stable, as shown (Figure 1) for an experiment at the National Spherical Torus Experiment at PPPL.

The red colored areas are unstable, and the blue areas are stable. As the plasma evolves in time, indicated by the arrows on the map, its collisionality decreases and its rotation increases. These changes lead the plasma to become unstable, and confinement of the plasma is lost, disrupting the fusion reaction. Controlling the rotation based on the stability map may allow steering the plasma back to a stable region, thereby avoiding disruption of the fusion reaction.

###

Along with two European colleagues, Drs. Berkery and Sabbagh recently won the Landau-Spitzer award, presented jointly by the American and European Physical Societies for outstanding contributions to plasma physics, for their work in understanding the stability of fusion plasmas.

Contacts:

Jack Berkery
609-243-2497
jberkery@pppl.gov

Steve Sabbagh
609-243-2645
sabbagh@pppl.gov

Abstract Y12.00005

Resistive Wall Mode Stability Forecasting in NSTX and NSTX-U
9:30 AM-12:30 PM, Friday, November 4, 2016, Room: 210 CDGH

Media Contact

James R Riordon
riordon@aps.org
301-209-3238

 @APSphysics

http://www.aps.org 

James R Riordon | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>