Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solar power from energy-harvesting trees – Watch the video!

03.03.2015

Scientists at VTT have developed a prototype of a tree that harvests solar energy from its surroundings - whether indoors or outdoors - stores it and turns it into electricity to power small devices such as mobile phones, humidifiers, thermometers and LED light bulbs.

The technology can also be used to harvest kinetic energy from the environment.


Watch the video

Watch the video: http://youtu.be/_QswunfBC8U

The "leaves" of the tree are flexible, patterned solar panels made using a technique developed by VTT on a printing process.

The leaves form an electronic system complete with wiring that conduct energy into a converter that feeds electricity to devices such as mobile phones or sensors analysing the environment.

The tree trunk is made with 3D technology by exploiting wood-based biomaterials VTT has developed.

VTT's technologies create endless opportunities for applications involving different kinds of electronics regarding lighting and energy harvesting, for example.

The more solar panels there are in a tree, the more energy it can harvest.

CONTACT US

Tähtinen Matti
Research Scientist
+358401530405
Matti.Tahtinen@vtt.fi
 
Immonen Kirsi
Senior Scientist
+358405185351
kirsi.immonen@vtt.fi
 
Ritvonen Tapio
Research Team Leader
+358400915114
tapio.ritvonen@vtt.fi

www.vtt.fi

Media Relations | VTT Newsletter

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>