Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Six-legged robots faster than nature-inspired gait

17.02.2017

When vertebrates run, their legs exhibit minimal contact with the ground. But insects are different. These six-legged creatures run fastest using a three-legged, or "tripod" gait where they have three legs on the ground at all times - two on one side of their body and one on the other. The tripod gait has long inspired engineers who design six-legged robots, but is it necessarily the fastest and most efficient way for bio-inspired robots to move on the ground?

Researchers at EPFL and UNIL revealed that there is in fact a faster way for robots to locomote on flat ground, provided they don't have the adhesive pads used by insects to climb walls and ceilings.


Researchers at EPFL and UNIL have discovered a faster and more efficient gait, never observed in nature, for six-legged robots walking on flat ground. Bio-inspired gaits -- less efficient for robots -- are used by real insects since they have adhesive pads to walk in three dimensions. The results provide novel approaches for roboticists and new information to biologists. (Video)

Credit: EPFL/Alain Herzog

This suggests designers of insect-inspired robots should make a break with the tripod-gait paradigm and instead consider other possibilities including a new locomotor strategy denoted as the "bipod" gait. The researchers' findings are published in Nature Communications.

The scientists carried out a host of computer simulations, tests on robots and experiments on Drosophila melanogaster - the most commonly studied insect in biology. "We wanted to determine why insects use a tripod gait and identify whether it is, indeed, the fastest way for six-legged animals and robots to walk," said Pavan Ramdya, co-lead and corresponding author of the study.

To test the various combinations, the researchers used an evolutionary-like algorithm to optimize the walking speed of a simulated insect model based on Drosophila. Step-by-step, this algorithm sifted through many different possible gaits, eliminating the slowest and shortlisting the fastest.

Adhesive pads

The findings shed new light on problems for biologists and robotics engineers alike. The researchers found that the common insect tripod gait did emerge when they optimized their insect model to climb vertical surfaces with adhesion on the tips of its legs. By contrast, simulations of ground-walking without the adhesiveness of insects' legs revealed that bipod gaits, where only two legs are on the ground at any given time, are faster and more efficient - although in nature no insects actually walk this way. "Our findings support the idea that insects use a tripod gait to most effectively walk on surfaces in three dimensions, and because their legs have adhesive properties. This confirms a long-standing biological hypothesis," said Ramdya. "Ground robots should therefore break free from only using the tripod gait".

Polymer boots

The researchers then built a six-legged robot capable of employing either the tripod or bipod gait. The bipod gait was again demonstrated to be faster, corroborating the simulation algorithms' results.

Finally, the experimenters examined real insects. To see if leg adhesion might also play a role in the walking coordination of real flies, they put polymer drops on the flies' legs to cover their claws and adhesive pads - as if the flies were wearing boots - and watched what happened. The flies quickly began to use bipod-like leg coordination similar to the one discovered in the simulation.

"This result shows that, unlike most robots, animals can adapt to find new ways of walking under new circumstances," said Robin Thandiackal, a co-lead author of the study. "There is a natural dialogue between robotics and biology: Many robot designers are inspired by nature and biologists can use robots to better understand the behavior of animal species. We believe that our work represents an important contribution to the study of animal and robotic locomotion."

###

Source: Climbing favors the tripod gait over alternative faster insect gaits, Nature Communications

Media Contact

Pavan Ramdya
ramdya@gmail.com
626-840-6121

 @EPFL_en

http://www.epfl.ch/index.en.html 

Pavan Ramdya | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>