Six-legged robots faster than nature-inspired gait

Researchers at EPFL and UNIL have discovered a faster and more efficient gait, never observed in nature, for six-legged robots walking on flat ground. Bio-inspired gaits -- less efficient for robots -- are used by real insects since they have adhesive pads to walk in three dimensions. The results provide novel approaches for roboticists and new information to biologists. (Video) Credit: EPFL/Alain Herzog

Researchers at EPFL and UNIL revealed that there is in fact a faster way for robots to locomote on flat ground, provided they don't have the adhesive pads used by insects to climb walls and ceilings.

This suggests designers of insect-inspired robots should make a break with the tripod-gait paradigm and instead consider other possibilities including a new locomotor strategy denoted as the “bipod” gait. The researchers' findings are published in Nature Communications.

The scientists carried out a host of computer simulations, tests on robots and experiments on Drosophila melanogaster – the most commonly studied insect in biology. “We wanted to determine why insects use a tripod gait and identify whether it is, indeed, the fastest way for six-legged animals and robots to walk,” said Pavan Ramdya, co-lead and corresponding author of the study.

To test the various combinations, the researchers used an evolutionary-like algorithm to optimize the walking speed of a simulated insect model based on Drosophila. Step-by-step, this algorithm sifted through many different possible gaits, eliminating the slowest and shortlisting the fastest.

Adhesive pads

The findings shed new light on problems for biologists and robotics engineers alike. The researchers found that the common insect tripod gait did emerge when they optimized their insect model to climb vertical surfaces with adhesion on the tips of its legs. By contrast, simulations of ground-walking without the adhesiveness of insects' legs revealed that bipod gaits, where only two legs are on the ground at any given time, are faster and more efficient – although in nature no insects actually walk this way. “Our findings support the idea that insects use a tripod gait to most effectively walk on surfaces in three dimensions, and because their legs have adhesive properties. This confirms a long-standing biological hypothesis,” said Ramdya. “Ground robots should therefore break free from only using the tripod gait”.

Polymer boots

The researchers then built a six-legged robot capable of employing either the tripod or bipod gait. The bipod gait was again demonstrated to be faster, corroborating the simulation algorithms' results.

Finally, the experimenters examined real insects. To see if leg adhesion might also play a role in the walking coordination of real flies, they put polymer drops on the flies' legs to cover their claws and adhesive pads – as if the flies were wearing boots – and watched what happened. The flies quickly began to use bipod-like leg coordination similar to the one discovered in the simulation.

“This result shows that, unlike most robots, animals can adapt to find new ways of walking under new circumstances,” said Robin Thandiackal, a co-lead author of the study. “There is a natural dialogue between robotics and biology: Many robot designers are inspired by nature and biologists can use robots to better understand the behavior of animal species. We believe that our work represents an important contribution to the study of animal and robotic locomotion.”

###

Source: Climbing favors the tripod gait over alternative faster insect gaits, Nature Communications

Media Contact

Pavan Ramdya
ramdya@gmail.com
626-840-6121

 @EPFL_en

http://www.epfl.ch/index.en.html 

Media Contact

Pavan Ramdya EurekAlert!

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors