Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Siemens offers first generator switchgear with vacuum circuit-breaker technology for high operating currents

29.10.2015

Siemens is developing the world's first air-insulated generator switchgear with vacuum circuit-breaker technology equipped with short-circuit breaking capacity of up to 100 kiloamperes (kA) at 24 kilovolts (kV).

The switchgear type HB3-100 protects operating equipment such as electrical generators and transformers against overvoltage and short-circuit conditions and serves to support automated and demand-controlled operational management of power plants.


Siemens' model HB3-100 switchgear is the world's first air-insulated generator switchgear with vacuum circuit-breaker technology equipped with short-circuit breaking capacity of up to 100 kiloamperes (kA) at 24 kilovolts (kV).

These switchgear can be used in hydroelectric power plants, coal-fired units and combined cycle power plants as well as solar-thermal and geothermal power plants with electrical generating capacities of up to 400 megawatts (MW). Thanks to their low-maintenance vacuum circuit-breaker technology and resource-optimized development, the lifecycle costs of HB3-100 switchgear is up to 70 percent less than existing solutions.

"With our new type-tested HB3-100 generator switchgear we are now expanding our product range for power plant operators, municipal utility companies and EPC projects, and offering this proven vacuum circuit-breaker technology also for high operating current applications," explains Stephan May, CEO of Siemens' Medium Voltage and Systems Business Unit. The products of Siemens HB3 series cover 80 percent of all market requirements for this type of switchgear in new power plant units and retrofit projects.

The HB3-100 consists of a generator circuit-breaker in vacuum technology, disconnectors, grounding system and integrated startup disconnect switches. Unlike gas-insulated circuit-breakers, vacuum circuit-breakers interrupt the arc in a high-vacuum interrupter tube.

The single-phase encapsulated unit can handle rated currents of up to 12,500 amperes (A) without forced cooling. It is maintenance-free up to 10,000 electrical switching events and 30 short-circuit interruptions at 100 kA. The hermetically sealed vacuum interrupters require no maintenance as a general rule and are resistant to any environmental influences.

A further important consideration is that no oxidation takes place in the vacuum, so that the metallic surfaces remain permanently clean and ensure a consistently low contact resistance. The lifecycle costs of the HB3-100 switchgear – costing of which covers everything from procurement to final disposal – are between 25 and 70 percent lower than for a generator switchgear with gaseous switching medium (e.g. SF6), depending on the power plant type.

For more information on Siemens' Energy Management Division, go to: www.siemens.com/energy-management

Further informationen on Siemens' generator switchgear systems can be found at www.siemens.com/generatorswitchgear


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of gas and steam turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015100042EMEN


Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7-29575

heiko.jahr​@siemens.com

Heiko Jahr | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>