Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New SiC Diodes Make Converters More Efficient

04.10.2013
Using new silicon carbide (SiC) diodes, Siemens and its research partners have succeeded in increasing the power of frequency converters by almost ten percent.

In the recently ended project MV-SiC, these diodes were tested in the sort of commercial converters used for large drives. SiC diodes reduce the complexity of the system, and because they have lower losses, they also increase energy efficiency.



Another result is that the switching frequency of converters can be increased by approximately a third, which boosts the performance and speed range of the drives. Siemens managed the project, and it was funded by the German Federal Ministry of Education and Research as part of the program Power Electronics for Raising Energy Efficiency.

With frequency converters electric motors can operate at variable-speed. When used for large pumps, compressors, or ships, such motors consume up to 70 percent less power than motors without any speed control. Considering that drives of this kind have an output of several megawatts, the savings are quite significant. Outputs on that scale require converters that produce voltages of several kilovolts (kV). In the past, such converters were made of conventional silicon semiconductors.

In the course of the project, the partners Infineon, Curamik Electronics, the TU Dresden, and experts from Siemens Drive Technologies and global research department Corporate Technology (CT) studied diode modules based on the semiconductor material silicon carbide (SiC) which have a cut-off voltage of 6.5 kilovolts (kV) and can withstand currents of up to 1.2 kiloamperes (kA).

By connecting bipolar SiC high-voltage diode chips in parallel, it was possible to construct functional SiC diode modules with the desired electrical parameters. To optimize the switching behavior, the partners built a fully digital drive circuit. This allowed them to achieve high switching frequencies and a high switching speed, which resulted in much lower turn-on losses. The work done by Siemens CT focused on the thermal behavior of the chips and diode modules. These are crucial factors for the reliability and lifetime of the diode modules, because the conducting-state voltage decreases with increasing temperature in a SiC diode.

Experts from Siemens Drive Technologies tested the new modules as midpoint diodes in Sinamics GM150 converters. This standard converter system for single drives was built with a 6.5 kV SiC diode module, which reduces the complexity and, therefore, the material requirements of the design while increasing efficiency.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>