Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shape-changing metamaterial developed using Kirigami technique

05.08.2016

Engineers from the University of Bristol have developed a new shape-changing metamaterial using Kirigami, which is the ancient Japanese art of cutting and folding paper to obtain 3D shapes.

Metamaterials are a class of material engineered to produce properties that don't occur naturally. Currently metamaterials are used to make artificial electromagnetic and vibration absorbers and high-performance sensors. Kirigami can be applied to transform two-dimensional sheet materials into complex three-dimensional shapes with a broader choice of geometries than 'classical' origami.


This is a demonstrator honeycomb changing shape in response to cable tension. The arrows indicate which cable is being pulled

Credit: University of Bristol

The research, developed within a PhD programme run by the University's EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science (ACCIS CDT), is published today in Scientific Reports.

The type of mechanical metamaterials using the Kirigami technique, developed by PhD student Robin Neville, changes shape seamlessly, exhibits large variations in mechanical performance with small geometry changes, and can be adapted to modify its configuration by using mainstream actuation mechanisms.

The Kirigami metamaterial can also be produced using off-the-shelf thermoplastic or thermoset composite materials, and different sensing and electronics systems can be embedded to obtain a fully integrated smart shape-changing structure.

Fabrizio Scarpa, Professor of Smart Materials and Structures in the Department of Aerospace Engineering and ACCIS, said: "Mechanical metamaterials exhibit unusual properties through the shape and deformation of their engineered subunits. Our research presents a new investigation of the kinematics of a family of cellular metamaterials based on Kirigami design principles. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties."

Robin Neville, PhD student, added: "By combining analytical models and numerical simulations we have demonstrated how these Kirigami cellular metamaterials can change their deformation characteristics. We have also shown the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures."

In the future, this Kirigami metamaterial could be used in robotics, morphing structures for airframe and space applications, microwave and smart antennas.

###

Paper

'Shape morphing Kirigami mechanical metamaterials' by Robin M. Neville, Fabrizio Scarpa and Alberto Pirrera in Scientific Reports [open access]

Media Contact

Joanne Fryer
joanne.fryer@bristol.ac.uk
44-011-733-17276

 @BristolUni

http://www.bristol.ac.uk 

Joanne Fryer | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>