Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sewage Sludge Incineration Plant Generates its own Energy

24.09.2015

The world’s largest plant for the incineration of sewage sludge is now nearly energy-neutral. With two newly installed steam boilers and one steam turbine, it is generating at least 95 percent of its power requirements from the waste heat of the incineration process itself. Operating costs have been reduced by nearly 10 percent.

Until now, the plant only generated low-pressure steam from the waste heat. The steam is used in various processes and, to a limited extent, for power generation.


The boiler is ready to be hoisted into the facility.


The location for the new boiler. Part of the roof is taken off so the boiler can be hoisted into place.

Boiler specialist NEM, owned by Siemens and operating under its own brand, has now replaced two of the four low-pressure steam boilers with high-pressure boilers and has installed a turbine that generates electricity via a generator. This makes it possible for the operator to use the exhaust heat much more efficiently and produce nine times more power than before.

Recovering Raw Materials

In Germany alone, about eight million tons of dewatered sewage sludge accumulates every year. Around one third of the sludge is used for agriculture, a share that has stagnated for years due to the increased quality requirements for sewage sludge.

Incineration is therefore becoming increasingly attractive, either in specialized plants or as additional fuel in cement plants, coal-fired power plants, and waste incineration plants. Dedicated plants that only incinerate sewage sludge offer the advantage that valuable raw materials contained in the sludge, particularly phosphorous, can be separated and reused as fertilizers.

In the Netherlands, N.V. Slibverwerking Noord-Brabant (SNB) operates this type of dedicated plant and processes approximately 450,000 tons of dewatered sewage sludge every year. The dried sludge is incinerated at a temperature of approximately 900 degrees Celsius.

Waste heat is used more efficiently and phosphorous is recovered as fertilizer


Customized Boiler

When the SNB plant was retrofitted with two high-pressure steam boilers for power generation, engineers from boiler specialist NEM, which became part of Siemens in 2011, faced two challenges. They had to design the boilers so they could fit into the plant, which was built in 1997. In addition, the boilers had to be installed as quickly as possible while the plant was in partial operation so as not to disrupt processing of sewage sludge.

Experts implemented a boiler that meets the specifications for the turbine (450 degrees Celsius steam temperature at a pressure of 60 bar) while also complying with prescribed restrictions for size and weight. They achieved this in part by using a smaller diameter for the boiler’s economizer tubes, which allowed them to reduce wall thickness and hence weight.

In addition, it was necessary to adjust the spacing of pipes in accordance with height restriction while at the same time taking into account the fouling characteristics of the fuel. Engineers had to pay special attention to the selection of steam temperature. Sewage sludge contains many different chemical elements, some of which corrode metal at very high temperatures. That’s why the steam temperature was limited to 450 degrees Celsius even though the boilers and turbine would be able to operate at higher temperatures.

The steam drives a Siemens SST 110 industrial steam turbine. The turbine has two modules connected in parallel. A high-pressure module is operated at a steam pressure of 60 bar. After this, a low-pressure module supplies the remaining steam in the form of process steam at a pressure of 2.5 bar.

This low-pressure steam is used primarily to dry the sewage sludge, which contains approximately 75 percent water upon delivery. Retrofitting with high-pressure boilers eliminated the steam motor operated with low-pressure steam that had previously been used to generate electricity with a 450-kilowatt generator. Instead, the plant now uses a 3.5-megawatt generator to cover nearly all of its power requirements.Bei der Nachrüstung der SNB-Anlage mit zwei Hochdruck-Dampfkesseln.

Norbert Aschenbrenner


Contact

Mr. Dr. Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
https://www.siemens.com

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>