Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sensor systems for Industry 4.0


Bending, drawing, rolling, pressing – there are many ways of shaping sheet metal. But all methods have one thing in common: enormous forces and fluctuating temperatures often result in flaws in the sheets. To prevent this and to boost the efficiency of the process, sensor systems are being developed at the Fraunhofer IST which measure forces and temperatures during the forming process.

In optimizing production processes it is very important to generate measurement data at locations where measuring systems can only be integrated with difficulty, such as, for example, in direct contact between workpiece and tool.

Strip metal drawing die with full thin film sensor system

© Fraunhofer IST

The Fraunhofer IST is developing thin film sensors with which manufacturing can be monitored in the main stress zones, directly on the tools. The new sensorized coating systems are multi­sensoric – in other words, they contain not only piezoresistive but also thermoresistive sensor structures embedded in the wear-protection layers.

It is thus possible for the first time to measure stresses and temperatures simultaneously and with spatial resolution. With these measurement results production processes can be optimized so that, for example, cracks and creasing during the deep-drawing of sheet metal can be minimized or plastic injection-molding processes can even be improved with respect to cycle times.

It is precisely in the age of Industry 4.0 that this further development of integrated sensor technology is gaining enormously in importance. The dominant topic in the production landscape of Europe, especially in Germany, is a qualitative, quantitative, flexible and at the same time resource-efficient production.

The basis for this development is a very good understanding of the production processes on the basis of human experience and measurement results. “This is where we start with our thin-film sensors in supplying the important data needed for simulations”, says Dr. Saskia Biehl, head of the “Micro and sensor technology” group at the Fraunhofer IST.

At the Fraunhofer Adaptronics Alliance joint booth (C22) in Hall 2 the Fraunhofer IST presents the new multisensoric coating systems.

About the project
The results we have described were obtained within the SensoFut project (Sensorized Future – Sensing of temperature and pressure in harsh environments), on which the Fraunhofer IST worked together with the Fraunhofer Institute for Machine Tools and Forming Technology IWU and Sirris, the Belgian research association. SensoFut is funded in the 13th Cornet Call (Collective Research Networking) by the Federal Ministry of Economics and Technology (BMWI) and the German Federation of Industrial Research Associations (AiF) and runs until June 30, 2015.

Weitere Informationen:

Dr. Simone Kondruweit | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

More articles from Power and Electrical Engineering:

nachricht New method increases energy density in lithium batteries
24.10.2016 | Columbia University School of Engineering and Applied Science

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>