Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor systems for Industry 4.0

25.03.2015

Bending, drawing, rolling, pressing – there are many ways of shaping sheet metal. But all methods have one thing in common: enormous forces and fluctuating temperatures often result in flaws in the sheets. To prevent this and to boost the efficiency of the process, sensor systems are being developed at the Fraunhofer IST which measure forces and temperatures during the forming process.

In optimizing production processes it is very important to generate measurement data at locations where measuring systems can only be integrated with difficulty, such as, for example, in direct contact between workpiece and tool.


Strip metal drawing die with full thin film sensor system

© Fraunhofer IST

The Fraunhofer IST is developing thin film sensors with which manufacturing can be monitored in the main stress zones, directly on the tools. The new sensorized coating systems are multi­sensoric – in other words, they contain not only piezoresistive but also thermoresistive sensor structures embedded in the wear-protection layers.

It is thus possible for the first time to measure stresses and temperatures simultaneously and with spatial resolution. With these measurement results production processes can be optimized so that, for example, cracks and creasing during the deep-drawing of sheet metal can be minimized or plastic injection-molding processes can even be improved with respect to cycle times.

It is precisely in the age of Industry 4.0 that this further development of integrated sensor technology is gaining enormously in importance. The dominant topic in the production landscape of Europe, especially in Germany, is a qualitative, quantitative, flexible and at the same time resource-efficient production.

The basis for this development is a very good understanding of the production processes on the basis of human experience and measurement results. “This is where we start with our thin-film sensors in supplying the important data needed for simulations”, says Dr. Saskia Biehl, head of the “Micro and sensor technology” group at the Fraunhofer IST.

At the Fraunhofer Adaptronics Alliance joint booth (C22) in Hall 2 the Fraunhofer IST presents the new multisensoric coating systems.

About the project
The results we have described were obtained within the SensoFut project (Sensorized Future – Sensing of temperature and pressure in harsh environments), on which the Fraunhofer IST worked together with the Fraunhofer Institute for Machine Tools and Forming Technology IWU and Sirris, the Belgian research association. SensoFut is funded in the 13th Cornet Call (Collective Research Networking) by the Federal Ministry of Economics and Technology (BMWI) and the German Federation of Industrial Research Associations (AiF) and runs until June 30, 2015.

Weitere Informationen:

http://www.ist.fraunhofer.de

Dr. Simone Kondruweit | Fraunhofer-Institut für Schicht- und Oberflächentechnik IST

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>