Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ruthenium catalyst goes with the flow


A green route to key molecular building blocks delivers a continuous stream of products

An efficient catalyst has opened up an environmentally benign route to a family of molecular building blocks found in many pharmaceuticals and agrochemicals, a study shows.

A ruthenium catalyst packed into a reaction column can help to produce a steady stream of useful products. © 2014 A*STAR Institute of Chemical and Engineering Sciences

Molecular building blocks known as substituted amines contain a nitrogen atom bonded to at least two carbon atoms. They are often made by reacting nitrogen-containing amines with carbon-based molecules bearing a halogen atom such as chlorine, but this process tends to produce significant amounts of toxic waste.

Cleaner synthesis processes use a catalyst to connect the carbon chain of an alcohol molecule to the amine. But these catalysts, which contain metals such as ruthenium and iridium, usually dissolve in solution with the reactants. This makes it difficult to separate them from the products once the reaction is completed, wasting precious catalyst and increasing processing costs.

Balamurugan Ramalingam and colleagues at the A*STAR Institute of Chemical and Engineering Sciences have now developed a ruthenium catalyst that does not dissolve in solution, potentially making this reaction greener and more efficient[1].

The team used linker molecules containing phosphorus atoms to attach the ruthenium compound [Ru(p-cymene)2Cl2]2 to tiny polystyrene beads or granules of silica. These particles are easily filtered from the reaction mixture.

The researchers optimized the catalyst’s activity by testing different types of linker and varying the amount of ruthenium compound on each particle. They then used the best catalyst to join together a wide range of amines and alcohols, producing various substituted amines in good yields. The catalyst could be recycled over five reactions without much loss in activity, and very little ruthenium leached from the solid particles into solution. Ramalingam’s team then exploited the catalyst to produce a drug molecule called piribedil (used to treat Parkinson’s disease) in almost 100 per cent yield.

The catalyst beads can also be packed into hollow columns (see image) so that reagents flow over them to deliver a stream of products. Such continuous-flow systems are increasingly used to make pharmaceuticals or other high-value chemicals, as a more efficient and sustainable alternative to conventional ‘batch-by-batch’ processes.

The scientists slowly pumped an amine and an alcohol through the loaded column at a temperature of 120 °C. This delivered a continuous flow of product in 60–70 per cent yields for 21 hours, with virtually no loss of ruthenium. “In principle, the reaction could be scaled up to production scale, and the complete conversion could be achieved by recycling the reagents,” says Ramalingam. The team is now using the catalyst to make amine-based polymers.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

[1] Shan, S. P., Dang, T. T., Seayad, A. M. & Ramalingam, B. Reusable supported ruthenium catalysts for the alkylation of amines by using primary alcohols. ChemCatChem 6, 808–814 (2014).

A*STAR Research | ResearchSEA
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>