Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ruthenium catalyst goes with the flow

04.12.2014

A green route to key molecular building blocks delivers a continuous stream of products

An efficient catalyst has opened up an environmentally benign route to a family of molecular building blocks found in many pharmaceuticals and agrochemicals, a study shows.


A ruthenium catalyst packed into a reaction column can help to produce a steady stream of useful products. © 2014 A*STAR Institute of Chemical and Engineering Sciences

Molecular building blocks known as substituted amines contain a nitrogen atom bonded to at least two carbon atoms. They are often made by reacting nitrogen-containing amines with carbon-based molecules bearing a halogen atom such as chlorine, but this process tends to produce significant amounts of toxic waste.

Cleaner synthesis processes use a catalyst to connect the carbon chain of an alcohol molecule to the amine. But these catalysts, which contain metals such as ruthenium and iridium, usually dissolve in solution with the reactants. This makes it difficult to separate them from the products once the reaction is completed, wasting precious catalyst and increasing processing costs.

Balamurugan Ramalingam and colleagues at the A*STAR Institute of Chemical and Engineering Sciences have now developed a ruthenium catalyst that does not dissolve in solution, potentially making this reaction greener and more efficient[1].

The team used linker molecules containing phosphorus atoms to attach the ruthenium compound [Ru(p-cymene)2Cl2]2 to tiny polystyrene beads or granules of silica. These particles are easily filtered from the reaction mixture.

The researchers optimized the catalyst’s activity by testing different types of linker and varying the amount of ruthenium compound on each particle. They then used the best catalyst to join together a wide range of amines and alcohols, producing various substituted amines in good yields. The catalyst could be recycled over five reactions without much loss in activity, and very little ruthenium leached from the solid particles into solution. Ramalingam’s team then exploited the catalyst to produce a drug molecule called piribedil (used to treat Parkinson’s disease) in almost 100 per cent yield.

The catalyst beads can also be packed into hollow columns (see image) so that reagents flow over them to deliver a stream of products. Such continuous-flow systems are increasingly used to make pharmaceuticals or other high-value chemicals, as a more efficient and sustainable alternative to conventional ‘batch-by-batch’ processes.

The scientists slowly pumped an amine and an alcohol through the loaded column at a temperature of 120 °C. This delivered a continuous flow of product in 60–70 per cent yields for 21 hours, with virtually no loss of ruthenium. “In principle, the reaction could be scaled up to production scale, and the complete conversion could be achieved by recycling the reagents,” says Ramalingam. The team is now using the catalyst to make amine-based polymers.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Reference:
[1] Shan, S. P., Dang, T. T., Seayad, A. M. & Ramalingam, B. Reusable supported ruthenium catalysts for the alkylation of amines by using primary alcohols. ChemCatChem 6, 808–814 (2014).

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>