Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016

Within the framework of Industrie 4.0 the aircraft manufacturing industry has embarked on an automation offensive. This involves moving away from customized machinery for special processes towards universal mobile robots. The ProsihP II project "Efficient, highly productive, precision machining of large CFRP structures", which was funded by the State of Lower Saxony, involved experts from a wide range of disciplines who set out to develop technology for the mobile, high-precision machining of large CFRP components using robots working in parallel.Spurred on by their own innovation, the project team has now achieved the ambitious objective of the project.

Last week Fraunhofer IFAM scientists and their project partners presented the intelligent milling system at Research Center CFK NORD in Stade.


ProsihP II system machining a shell of an A320 vertical tail plane.

(c) Fraunhofer IFAM


Mobile CNC robot for machining large structures.

(c) Fraunhofer IFAM

The conventional portal machines currently in use are expensive and do not allow rapid measuring and parallel processing. When processing carbon fiber reinforced plastics (CFRPs) in particular, the process monitoring cannot prevent machining errors, resulting in irreparable damage to materials and high reject rates and associated costs.

The objectives of the ProsihP II project, carried out over the last three years, were therefore very clear:

  • To develop a modular system of mobile robots that can adapt to components of almost any geometry and size.
  • To be able to use several robots simultaneously in order to facilitate much more rapid machining of large CFRP components.
  • Adaptability such that mobile robot systems with interchangeable end effectors can be used for a range of other processes.
  • The development of a high-precision robot which due to its accurate positional guidance opens up new fields of application.
  • Continuous process monitoring whereby, if there is an increased risk of errors, the system returns to a safe process window before any damage arises.

A mobile platform for industrial robots was designed in order to realize a very versatile machine concept and give the desired degree of freedom for positioning the machining systems on components. A prerequisite for good machining results here is adequate static and dynamic stability. In collaboration with the project partners, the automation team at Fraunhofer IFAM designed and built a mobile platform suitable for interchangeable heavy-duty robots from all manufacturers. The cost-efficient mobile platform was constructed from standard, commercially available components and is firmly positioned on the floor for the machining work with the aid of three supports.

This prevents any destabilization of the platform. To change location, the platform extends its three wheels over the supports. The whole structure has total freedom of movement and can even turn on the spot.

Industrial robots of up to three tonnes in weight can be mounted on the universal connection plate of the mobile platform. The project requirements on the absolute positioning and path precision of the total system, which comprised the robots and mobile platform, were so high that it was necessary to significantly increase the accuracy of the selected robots.

To achieve this, the robot kinematics were fitted with a CNC control system (Siemens SINUMERIK 840D sl), compatible motors, and secondary encoder systems on each axis for correcting positional deviations. In addition, an advanced camera system registers the actual position of the robot, so allowing realtime correction by comparison with target data. The final result of the development work is one of the most precise machining robots in the world.

Both the procedure employed and the technological components have the advantage that they can be employed for any robot kinematics. A significant step was thus taken towards a standard for absolutely accurate robots in the aircraft manufacturing industry.

At the end of the development phase, the self-adaptation of robot-based milling processes to different component geometries and positions was successfully tested on a 7 x 2 meter CFRP vertical tail plane shell of an Airbus A320. The system is, however, also designed for much larger components of up to 30 meters. It can, for example, be used for machining of various primary aircraft structures such as wing and fuselage sections.

Furthermore, with only minor modification, the mobile robot system can be used, for example, for machining wind turbine rotor blades, sections of rail vehicles and large components for shipbuilding.

Project partners:
Aicon 3D Systems GmbH, Airbus Operations GmbH, Artis GmbH, CTC GmbH Stade, IPMT der TU Hamburg, Ludwig Schleicher Anlagenbau GmbH, Mabi AG, mz robolab GmbH, Siemens AG, and Volkswagen AG

Funding:
Fraunhofer IFAM wishes to thank the Lower Saxony Ministry for Economic Affairs, Employment, and Transport, the NBank as well as the Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) for funding the ProsihP II project (ZW 3-80140004).

Weitere Informationen:

http://www.ifam.fraunhofer.de

Dipl.-Biol. Martina Ohle | Fraunhofer-Gesellschaft

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks