Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching a Revolution

03.12.2015

Around the world, policymakers have stated that they want to discontinue the use of fossil fuels by 2100. At Siemens, experts are researching and simulating how this revolutionary objective will affect our energy supply systems and what it will mean for electricity markets in the future. In line with these developments, Siemens Corporate Technology (CT) already offers a range of exciting solutions that can make what Germany calls “Energiewende 2.0” come true.

“#G7 Summit delivered” – this tweet from Greenpeace suggests that the results of the June 2015 conference in the Bavarian palace of Elmau must have been pretty impressive. During the summit, the leaders of the G7 countries unanimously announced that their nations would jointly strive to decarbonize the global economy by 2100.


A wind farm in the North Sea. Policymakers hope to end the era of fossil fuels by 2100. For energy systems, that means nothing less than a revolution is needed.

This decision is of historic significance, because it means that the entire world will eventually discontinue using fossil fuels such as coal, natural gas, and oil. Such a change would mark the end of the age of fossil fuels and would be nothing less than a revolution in energy supply systems.


Disruptive Transformation

The G7 statement represents an ambitious target that will require much work if it is not to remain a mere vision. Just setting up more wind turbines, solar panels, and combined heat-and-power plants won’t be enough. On the contrary, many technological advances and innovations will first be needed before major economies can be decarbonized. This is not surprising.

In Germany, for instance, as recently as the early 1990s, only about 100 medium and large-size power plants were in operation. Since then, however, the number of energy suppliers has increased to several millions. “We have to prepare ourselves for an energy supply system that consists of millions of small and large distributed energy generation units. This increases the system’s technological complexity and, thus, the demands on our energy infrastructure,” says Professor Armin Schnettler, Head of New Technology & Innovation Fields at the Corporate Technology unit of Siemens AG.

Schnettler knows what he is talking about. In line with the “Energiewende 2.0” strategy, Schnettler and his team are researching innovative solutions that prepare energy supply systems for the future, when distributed units will generate energy from renewable sources. “Energy supply systems are facing a disruptive development worldwide,” he says. In the future, existing technologies might be completely replaced by new ones. In their focus on the “Energiewende 2.0,” experts at Siemens are identifying and developing the requisite technologies. In doing so, they are also providing their colleagues in the business units with a basis for determining the requirements that the technologies will have to meet.

Simulating Tomorrow’s Energy Picture

“Today, we don’t know how to operate a power grid, in which up to 80 percent of the electricity comes from renewable sources,” says Schnettler. To find answers, Siemens has initiated the Energy System Development Plan (ESDP). In this research project, experts from Siemens are working closely with RWTH Aachen university to conduct holistic simulations of the long-term effects that a high percentage of energy from renewable sources will have on the generation and transmission of electricity as well as on its distribution and the market as a whole.

“We are digitizing all of the current energy supply systems and their developments and depicting them in sophisticated simulations,” says Schnettler. “Not only does this enable us to foresee technological, economic, and political challenges but also to minimize foreseeable risks and uncertainties so that we can ensure a stable energy supply. As a result, we are in the process of obtaining a clear picture of future energy supply systems.” Schnettler is sure that the energy supply systems for electricity, heat, refrigeration, gas, and mobility will, in the medium and long run, grow together more and more and perhaps lead to completely new supply structures.

IC Technologies and Swarm Grids

As the prospect of a highly integrated energy infrastructure becomes ever more likely, associated measures are becoming ever more urgent. For instance, as more and more power plants that used to ensure grid stability are shut off, “swarms” of distributed energy generation and storage units may provide a solution. Such swarm grids are comparable to virtual control units. A swarm has many individual units that are closely networked with one another. It also meets the very high demands that have to be fulfilled to ensure a reliable energy supply and system stability. The key question here is how much decision-making authority future swarms will be able to have in an overall system.

“In the future, we will have to integrate electronics, power electronics, and IC technologies more intensely into energy supply systems in order to ensure that they remain stable in normal operation as well as when a fault occurs,” says Schnettler. This trend is being supported by the increased use of power electronic components for the supply of electricity. As a result, Siemens researchers are forging ahead with, for example, the development of new converter technologies. “The new generation of converters is standardized and more affordable because it is less specific in its demands,” explains Schnettler. New opportunities for these technologies will be opened up by increasingly powerful software.


Chemical Storage Technologies to the Rescue

Corporate Technology is also researching chemical storage technologies, because the more volatile electricity generation becomes as a result of renewable energy sources, the greater the need will be for solutions that store electricity and at the same time ensure system stability. “Without efficient large-scale storage technologies, it would be unthinkable to create an energy supply system with an 80-percent share of renewables,” says Schnettler. The German government’s “state of the energy transition 2015” points out that major advances are still needed in storage technology.

Professor Maximilian Fleischer knows this as well. Fleischer is a member of Schnettler’s team, where he heads the Chemical and Optical Systems research unit at Corporate Technology. “We are focusing on chemical storage solutions, because they offer the highest potential for storing large amounts of energy for a long time,” he says. “We are also using green electricity to transform CO2 into valuable resources.” To make this possible, Fleischer and his teams use carbon dioxide and green electricity in an electrolysis process to create valuable raw materials, such as carbon monoxide, ethylene and alcohols for industry. “Although renewable energy will eventually be economically stored or transformed into hydrogen or synthetic fuels, we expect this to happen only over the long term,” says Fleischer.


Decarbonization: A Strategic Objective

From chemical storage technologies to powerful converters and smart grids, innovative ideas and technologies are crucial for ensuring that decarbonization doesn’t just remain a theoretical construct.

It must be understood, however, that isolated technologies won’t suffice to usher in the post-fossil fuel era. “We must use a holistic approach,” says Schnettler. “Decarbonization requires innovations within the entire system.” Only if this happens can the revolution of the energy supply systems be successful. It’s also the only way to ensure that decarbonization won’t just be a vision, but will become a strategic objective – not only for governments, but also within Siemens.


Ulrich Kreutzer

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

Ulrich Kreutzer | Siemens Pictures of the Future
Further information:
http://www.siemens.com/innovation

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>