Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching a Revolution

03.12.2015

Around the world, policymakers have stated that they want to discontinue the use of fossil fuels by 2100. At Siemens, experts are researching and simulating how this revolutionary objective will affect our energy supply systems and what it will mean for electricity markets in the future. In line with these developments, Siemens Corporate Technology (CT) already offers a range of exciting solutions that can make what Germany calls “Energiewende 2.0” come true.

“#G7 Summit delivered” – this tweet from Greenpeace suggests that the results of the June 2015 conference in the Bavarian palace of Elmau must have been pretty impressive. During the summit, the leaders of the G7 countries unanimously announced that their nations would jointly strive to decarbonize the global economy by 2100.


A wind farm in the North Sea. Policymakers hope to end the era of fossil fuels by 2100. For energy systems, that means nothing less than a revolution is needed.

This decision is of historic significance, because it means that the entire world will eventually discontinue using fossil fuels such as coal, natural gas, and oil. Such a change would mark the end of the age of fossil fuels and would be nothing less than a revolution in energy supply systems.


Disruptive Transformation

The G7 statement represents an ambitious target that will require much work if it is not to remain a mere vision. Just setting up more wind turbines, solar panels, and combined heat-and-power plants won’t be enough. On the contrary, many technological advances and innovations will first be needed before major economies can be decarbonized. This is not surprising.

In Germany, for instance, as recently as the early 1990s, only about 100 medium and large-size power plants were in operation. Since then, however, the number of energy suppliers has increased to several millions. “We have to prepare ourselves for an energy supply system that consists of millions of small and large distributed energy generation units. This increases the system’s technological complexity and, thus, the demands on our energy infrastructure,” says Professor Armin Schnettler, Head of New Technology & Innovation Fields at the Corporate Technology unit of Siemens AG.

Schnettler knows what he is talking about. In line with the “Energiewende 2.0” strategy, Schnettler and his team are researching innovative solutions that prepare energy supply systems for the future, when distributed units will generate energy from renewable sources. “Energy supply systems are facing a disruptive development worldwide,” he says. In the future, existing technologies might be completely replaced by new ones. In their focus on the “Energiewende 2.0,” experts at Siemens are identifying and developing the requisite technologies. In doing so, they are also providing their colleagues in the business units with a basis for determining the requirements that the technologies will have to meet.

Simulating Tomorrow’s Energy Picture

“Today, we don’t know how to operate a power grid, in which up to 80 percent of the electricity comes from renewable sources,” says Schnettler. To find answers, Siemens has initiated the Energy System Development Plan (ESDP). In this research project, experts from Siemens are working closely with RWTH Aachen university to conduct holistic simulations of the long-term effects that a high percentage of energy from renewable sources will have on the generation and transmission of electricity as well as on its distribution and the market as a whole.

“We are digitizing all of the current energy supply systems and their developments and depicting them in sophisticated simulations,” says Schnettler. “Not only does this enable us to foresee technological, economic, and political challenges but also to minimize foreseeable risks and uncertainties so that we can ensure a stable energy supply. As a result, we are in the process of obtaining a clear picture of future energy supply systems.” Schnettler is sure that the energy supply systems for electricity, heat, refrigeration, gas, and mobility will, in the medium and long run, grow together more and more and perhaps lead to completely new supply structures.

IC Technologies and Swarm Grids

As the prospect of a highly integrated energy infrastructure becomes ever more likely, associated measures are becoming ever more urgent. For instance, as more and more power plants that used to ensure grid stability are shut off, “swarms” of distributed energy generation and storage units may provide a solution. Such swarm grids are comparable to virtual control units. A swarm has many individual units that are closely networked with one another. It also meets the very high demands that have to be fulfilled to ensure a reliable energy supply and system stability. The key question here is how much decision-making authority future swarms will be able to have in an overall system.

“In the future, we will have to integrate electronics, power electronics, and IC technologies more intensely into energy supply systems in order to ensure that they remain stable in normal operation as well as when a fault occurs,” says Schnettler. This trend is being supported by the increased use of power electronic components for the supply of electricity. As a result, Siemens researchers are forging ahead with, for example, the development of new converter technologies. “The new generation of converters is standardized and more affordable because it is less specific in its demands,” explains Schnettler. New opportunities for these technologies will be opened up by increasingly powerful software.


Chemical Storage Technologies to the Rescue

Corporate Technology is also researching chemical storage technologies, because the more volatile electricity generation becomes as a result of renewable energy sources, the greater the need will be for solutions that store electricity and at the same time ensure system stability. “Without efficient large-scale storage technologies, it would be unthinkable to create an energy supply system with an 80-percent share of renewables,” says Schnettler. The German government’s “state of the energy transition 2015” points out that major advances are still needed in storage technology.

Professor Maximilian Fleischer knows this as well. Fleischer is a member of Schnettler’s team, where he heads the Chemical and Optical Systems research unit at Corporate Technology. “We are focusing on chemical storage solutions, because they offer the highest potential for storing large amounts of energy for a long time,” he says. “We are also using green electricity to transform CO2 into valuable resources.” To make this possible, Fleischer and his teams use carbon dioxide and green electricity in an electrolysis process to create valuable raw materials, such as carbon monoxide, ethylene and alcohols for industry. “Although renewable energy will eventually be economically stored or transformed into hydrogen or synthetic fuels, we expect this to happen only over the long term,” says Fleischer.


Decarbonization: A Strategic Objective

From chemical storage technologies to powerful converters and smart grids, innovative ideas and technologies are crucial for ensuring that decarbonization doesn’t just remain a theoretical construct.

It must be understood, however, that isolated technologies won’t suffice to usher in the post-fossil fuel era. “We must use a holistic approach,” says Schnettler. “Decarbonization requires innovations within the entire system.” Only if this happens can the revolution of the energy supply systems be successful. It’s also the only way to ensure that decarbonization won’t just be a vision, but will become a strategic objective – not only for governments, but also within Siemens.


Ulrich Kreutzer

Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski


Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446

Ulrich Kreutzer | Siemens Pictures of the Future
Further information:
http://www.siemens.com/innovation

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>