Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers improve performance of cathode material by controlling oxygen activity


An international team of researchers has demonstrated a new way to increase the robustness and energy storage capability of a particular class of "lithium-rich" cathode materials -- by using a carbon dioxide-based gas mixture to create oxygen vacancies at the material's surface. Researchers said the treatment improved the energy density -- the amount of energy stored per unit mass -- of the cathode material by up to 30 to 40 percent.

The discovery sheds light on how changing the oxygen composition of lithium-rich cathode materials could improve battery performance, particularly in high-energy applications such as electric vehicles. The findings were published July 1 in Nature Communications.

This is a SEM image of lithium-rich cathode particles treated with a carbon dioxide-based gas mixture to introduce oxygen vacancies on the surface.

Credit: Laboratory for Energy Storage and Conversion, UC San Diego

"We've uncovered a new mechanism at play in this class of lithium-rich cathode materials. With this study, we want to open a new pathway to explore more battery materials in which we can control oxygen activity," said Shirley Meng, nanoengineering professor at the University of California San Diego and one of the principal investigators of the study.

Meng leads the Laboratory for Energy Storage and Conversion and is the director of the Sustainable Power and Energy Center, both at UC San Diego. A hallmark of her group's research efforts is understanding the science behind battery materials -- at the level of single atoms and molecules, and at the interfaces. Her group is one of the first to focus on the activity of oxygen atoms in battery materials. Typically, the focus has centered on lithium and transition metal atoms. "Now we're showing that oxygen also plays a significant role in battery performance," Meng said.

In the new study, Meng's group collaborated with researchers from the Chinese Academy of Sciences to develop a way to introduce oxygen vacancies in a class of cathode materials known as lithium-rich layered oxides. These materials have been gaining popularity among battery researchers because they can potentially house more energy than other cathode materials. But lithium-rich cathode materials also have their drawbacks, including slow discharge rates and an issue called voltage fade, which is characterized by a drop in cell voltage with each charge-discharge cycle.

"We're presenting a new way to mitigate the issues plaguing lithium-rich cathode materials -- through understanding and controlling how oxygen behaves in these materials," Meng said.

The team found that treating the lithium-rich cathode particles with a carbon dioxide-based gas mixture created oxygen vacancies uniformly throughout the surface of the particles. The treatment only left oxygen vacancies within the first 10 to 20 nanometers without altering the rest of the material's atomic structure.

"This is a mild treatment that allows us to make controlled changes in the material exactly where we want -- near the interface," said Minghao Zhang, co-first author of the paper and a PhD student at the Jacobs School of Engineering at UC San Diego working in Meng's group.

In electrochemical tests, the treated material exhibited a relatively high discharge capacity (300 milliamp-hours per gram) with minimal voltage loss after 100 charge-discharge cycles.

"This is a significant improvement with regards to the voltage fade problem, but there's still a lot of work left to completely resolve this problem," Meng said.

Through characterization studies in collaboration with groups from Brookhaven National Laboratory and Oak Ridge National Laboratory, researchers provided several reasons why oxygen vacancies improved the cathode material's performance. They explained that the vacancies allow lithium ions to move around more easily throughout the cathode, leading to high discharge capacity and faster discharge rates. The vacancies also increase the material's stability by inhibiting the formation of highly reactive oxygen radicals at the cathode material's surface, which are typically responsible for degrading the electrolyte while the battery is operating. This could mean longer battery lifetime, researchers said.

"We can controllably utilize oxygen activity to improve the performance of the material and better control how it works inside the battery," Zhang said.

As a next step, researchers will work on scaling up the treatment reported in this study. They will also conduct further studies on the oxygen activity in other materials and how it could be leveraged to improve battery performance.

"But before we can decide if this is a promising step forward for batteries, we need to probe whether our technology can improve battery performance based on multiple metrics at once, not just whether it improves a single parameter," Meng said. "We need to think of improving battery performance like we're expanding on a spiderweb with multiple variables."


Full paper: "Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries." Authors of the study are Minghao Zhang,* Danna Qian, Haodong Liu, Sunny Hy and Ying Shirley Meng of UC San Diego; Bao Qiu,* Yonggao Xia and Zhaoping Liu of the Chinese Academy of Sciences, Zhejiang, China; Lijun Wu* and Yimei Zhu of Brookhaven National Laboratory; Jun Wang of University of Müenster; and Yan Chen and Ke An of Oak Ridge National Laboratory. The work performed in the United States was supported by grants from the Department of Energy.

*These authors contributed equally to this work.

Media Contact

Liezel Labios


Liezel Labios | EurekAlert!

Further reports about: activity battery cathode cathode materials voltage

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>