Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Develop Optimal Algorithm for Determining Focus Error in Eyes and Cameras

University of Texas at Austin researchers have discovered how to extract and use information in an individual image to determine how far objects are from the focus distance, a feat only accomplished by human and animal visual systems until now.

Like a camera, the human eye has an auto-focusing system, but human auto-focusing rarely makes mistakes. And unlike a camera, humans do not require trial and error to focus an object.

Johannes Burge, a postdoctoral fellow in the College of Liberal Arts’ Center for Perceptual Systems and co-author of the study, says it is significant that a statistical algorithm can now determine focus error, which indicates how much a lens needs to be refocused to make the image sharp, from a single image without trial and error.

“Our research on defocus estimation could deepen our understanding of human depth perception,” Burge says. “Our results could also improve auto-focusing in digital cameras. We used basic optical modeling and well-understood statistics to show that there is information lurking in images that cameras have yet to tap.”

The researchers’ algorithm can be applied to any blurry image to determine focus error. An estimate of focus error also makes it possible to determine how far objects are from the focus distance.

In the human eye, inevitable defects in the lens, such as astigmatism, can help the visual system (via the retina and brain) compute focus error; the defects enrich the pattern of “defocus blur,” the blur that is caused when a lens is focused at the wrong distance. Humans use defocus blur to both estimate depth and refocus their eyes. Many small animals use defocus as their primary depth cue.

“We are now one step closer to understanding how these feats are accomplished,” says Wilson Geisler, director of the Center for Perceptual Systems and coauthor of the study. “The pattern of blur introduced by focus errors, along with the statistical regularities of natural images, makes this possible.”

Burge and Geisler considered what happens to images as focus error increases: an increasing amount of detail is lost with larger errors. Then, they noted that even though the content of images varies considerably (e.g. faces, mountains, flowers), the pattern and amount of detail in images is remarkably constant. This constancy makes it possible to determine the amount of defocus and, in turn, to re-focus appropriately.

Their article, titled “Optimal defocus estimation in individual natural images,” will be published in the Proceedings of the National Academy of Sciences. The research was supported by a grant from the National Institutes of Health.

The Center for Perceptual Systems is an integrated program that overlaps several separate departments: Neuroscience, Psychology, Electrical and Computer Engineering, Neurobiology, Computer Science, and Speech and Communication.

Johannes Burge | Newswise Science News
Further information:

Further reports about: Error Retina algorithm cameras defocus blur digital camera eyes human eye inevitable defects

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>