Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space test for Swiss-designed solar antennas

28.09.2005


A satellite equipped with novel solar antennas developed by the EPFL (Ecole Polytechnique Federale de Lausanne) will be part of the payload on the Russian rocket Cosmos, scheduled for launch September 30 from Plesetsk, Russia. This satellite incorporates advanced technology that combines antenna functions and solar cells on a single surface.



The rocket’s payload will also include a satellite designed and built by students from several European universities, including a group of EPFL students.

Because of the enormous cost of getting to their destination, structures used in space applications have to be lighter, smaller, and more reliable than their Earth-bound counterparts. In confronting this challenge, the European Space Agency (ESA) drew upon the recognized expertise of the Electromagnetics and Acoustics Laboratory at the EPFL in Switzerland, asking them to develop a single surface that could function as both antenna and solar cell array.


As EPFL professor Juan Mosig notes, “The planar antennas have plenty of quiet real estate available for solar cells,” and a combined surface is ideal as it results in a substantial efficiency gain and weight reduction for the satellite.

Advances in both solar cell and antenna technology have been made in the development of the antenna, nicknamed Asolant (Advanced SOLar ANTenna). Six years after initiation, it’s ready for its new life in space. The structure is light and thin. It’s strong and provides its own source of energy. Its gallium arsenide solar cells are adapted to the conditions of space. The antenna will communicate with Earth, sending and receiving GPS signals as well as signals from mobile telephone networks such as Orbcomm.

The Zurich-based firm HTS handled the antennas’ manufacture, and the structure will ride aboard a Rubin satellite, adapted to the Electromagnetics and Acoustics Lab’s specifications by the German company OHB Systems.

Earth-based solar antenna applications

Because Asolant is autonomous, providing its own power source with the solar cells on its surface, it also has the potential for many exceedingly practical Earth-based applications. Sheets of solar antennae on residential rooftops could simultaneously power the home and send and receive TV, radio and wireless phone and internet signals. Buoy-based solar antennas could improve atmospheric and oceanic data-gathering capabilities, providing better early-warning systems for hurricanes, tsunamis and other natural disasters. Solar antennas could be used in increasingly power-hungry cell phones. Information from remote regions could be sent via autonomous transmitters.

The EPFL’s Electromagnetics and Acoustics Lab has spun off a Swiss start-up company, JAST, that is in the process of studying the market possibilities of these kinds of applications.

A student satellite

The Cosmos rocket will also launch a student satellite. This ESA-sponsored project, carried out in the framework of the Student Space Exploration and Technology Initiative (SSETI), caught the attention of a small group of EPFL students. The electronics they developed will contribute to the satellite’s propulsion system, according to PhD student Renato Krpoun. After undergoing several tests in the first few months in orbit, the satellite will ultimately function as an amateur radio transponder.

Mary Parlange | alfa
Further information:
http://itopwww.epfl.ch/LEMA/Asolant/
http://www.jast.ch
http://actualites.epfl.ch/index.php?module=Presseinfo&func=view_com&id=302

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>