Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space test for Swiss-designed solar antennas

28.09.2005


A satellite equipped with novel solar antennas developed by the EPFL (Ecole Polytechnique Federale de Lausanne) will be part of the payload on the Russian rocket Cosmos, scheduled for launch September 30 from Plesetsk, Russia. This satellite incorporates advanced technology that combines antenna functions and solar cells on a single surface.



The rocket’s payload will also include a satellite designed and built by students from several European universities, including a group of EPFL students.

Because of the enormous cost of getting to their destination, structures used in space applications have to be lighter, smaller, and more reliable than their Earth-bound counterparts. In confronting this challenge, the European Space Agency (ESA) drew upon the recognized expertise of the Electromagnetics and Acoustics Laboratory at the EPFL in Switzerland, asking them to develop a single surface that could function as both antenna and solar cell array.


As EPFL professor Juan Mosig notes, “The planar antennas have plenty of quiet real estate available for solar cells,” and a combined surface is ideal as it results in a substantial efficiency gain and weight reduction for the satellite.

Advances in both solar cell and antenna technology have been made in the development of the antenna, nicknamed Asolant (Advanced SOLar ANTenna). Six years after initiation, it’s ready for its new life in space. The structure is light and thin. It’s strong and provides its own source of energy. Its gallium arsenide solar cells are adapted to the conditions of space. The antenna will communicate with Earth, sending and receiving GPS signals as well as signals from mobile telephone networks such as Orbcomm.

The Zurich-based firm HTS handled the antennas’ manufacture, and the structure will ride aboard a Rubin satellite, adapted to the Electromagnetics and Acoustics Lab’s specifications by the German company OHB Systems.

Earth-based solar antenna applications

Because Asolant is autonomous, providing its own power source with the solar cells on its surface, it also has the potential for many exceedingly practical Earth-based applications. Sheets of solar antennae on residential rooftops could simultaneously power the home and send and receive TV, radio and wireless phone and internet signals. Buoy-based solar antennas could improve atmospheric and oceanic data-gathering capabilities, providing better early-warning systems for hurricanes, tsunamis and other natural disasters. Solar antennas could be used in increasingly power-hungry cell phones. Information from remote regions could be sent via autonomous transmitters.

The EPFL’s Electromagnetics and Acoustics Lab has spun off a Swiss start-up company, JAST, that is in the process of studying the market possibilities of these kinds of applications.

A student satellite

The Cosmos rocket will also launch a student satellite. This ESA-sponsored project, carried out in the framework of the Student Space Exploration and Technology Initiative (SSETI), caught the attention of a small group of EPFL students. The electronics they developed will contribute to the satellite’s propulsion system, according to PhD student Renato Krpoun. After undergoing several tests in the first few months in orbit, the satellite will ultimately function as an amateur radio transponder.

Mary Parlange | alfa
Further information:
http://itopwww.epfl.ch/LEMA/Asolant/
http://www.jast.ch
http://actualites.epfl.ch/index.php?module=Presseinfo&func=view_com&id=302

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>