Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Italian research opens new possibilities for the hydrogen production and for the purification of polluted gases

29.07.2005


The next issue of Science will report a study that explains the mechanism for oxygen release by cerium oxide. This material is an important catalyst that favors many fundamental reactions that have profound implications for energy storage and environmental issues. These reactions include, for example, the purification of polluted gases and the production of hydrogen as new energy vector for fuel cells. The present study could inspire the design of new efficient catalysts for producing a large variety of goods, e.g. plastic materials, fuels, fertilizers and drugs.



The mechanism of oxygen release was analyzed and described by studying the surfaces of cerium oxide (ceria). “Ceria-based materials are oxygen buffers, materials that allow to efficiently store or release oxygen, thus favoring a high catalytic activity and inducing a set of chemical reactions which would otherwise require higher pressures and temperatures” says Friedrich Esch (Laboratorio TASC INFM-CNR). “The production of more efficient catalysts is therefore of paramount importance for saving energy, increasing the safety of industrial processes, and reducing the environmental impact.”

Presently, most of the industrial processes employ heterogeneous catalysts, i.e. devices that are in a phase (solid), different from the one of the reactants (gases): “A typical example are exhaust catalysts capable of purifying the combustion gases” explains Stefano Fabris (National Simulation Center DEMOCRITOS INFM-CNR and SISSA). Most of the recent research has focused on the energy production from alternative sources, on the reduction of the environmental impact, and on the energy storage. To pursue these important objectives, new and more efficient catalysts are needed. “The design and production of these catalysts is clearly a priority issue and ceria-based materials are attracting a great deal of attention by the most advanced laboratories” says Paolo Fornasiero (Department of Chemistry at the University of Trieste, and INSTM).


The team includes researchers from different institutions (INFM-CNR, SISSA, and University of Trieste) all located in Trieste (Italy). The work combines two complementary, state-of-the art techniques: scanning tunneling microscopy that allows to obtain experimental images of the material surface with atomic resolution, and numerical modeling that describes theoretically their electronic and atomic structure by means of parallel computing.

The multidisciplinary character of Trieste as a research center and its high concentration of scientific institutions played a key role in this important scientific project. “Trieste has a tradition of excellence in the fields of numerical simulation and of experimental analysis of matter, as well as in the design and development of industrial catalysts” conclude Giovanni Comelli and Renzo Rosei of the Department of Physics at the University of Trieste, who coordinated the project.

Mauro Scanu | alfa
Further information:
http://www.sciencemag.org

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>