Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Italian research opens new possibilities for the hydrogen production and for the purification of polluted gases


The next issue of Science will report a study that explains the mechanism for oxygen release by cerium oxide. This material is an important catalyst that favors many fundamental reactions that have profound implications for energy storage and environmental issues. These reactions include, for example, the purification of polluted gases and the production of hydrogen as new energy vector for fuel cells. The present study could inspire the design of new efficient catalysts for producing a large variety of goods, e.g. plastic materials, fuels, fertilizers and drugs.

The mechanism of oxygen release was analyzed and described by studying the surfaces of cerium oxide (ceria). “Ceria-based materials are oxygen buffers, materials that allow to efficiently store or release oxygen, thus favoring a high catalytic activity and inducing a set of chemical reactions which would otherwise require higher pressures and temperatures” says Friedrich Esch (Laboratorio TASC INFM-CNR). “The production of more efficient catalysts is therefore of paramount importance for saving energy, increasing the safety of industrial processes, and reducing the environmental impact.”

Presently, most of the industrial processes employ heterogeneous catalysts, i.e. devices that are in a phase (solid), different from the one of the reactants (gases): “A typical example are exhaust catalysts capable of purifying the combustion gases” explains Stefano Fabris (National Simulation Center DEMOCRITOS INFM-CNR and SISSA). Most of the recent research has focused on the energy production from alternative sources, on the reduction of the environmental impact, and on the energy storage. To pursue these important objectives, new and more efficient catalysts are needed. “The design and production of these catalysts is clearly a priority issue and ceria-based materials are attracting a great deal of attention by the most advanced laboratories” says Paolo Fornasiero (Department of Chemistry at the University of Trieste, and INSTM).

The team includes researchers from different institutions (INFM-CNR, SISSA, and University of Trieste) all located in Trieste (Italy). The work combines two complementary, state-of-the art techniques: scanning tunneling microscopy that allows to obtain experimental images of the material surface with atomic resolution, and numerical modeling that describes theoretically their electronic and atomic structure by means of parallel computing.

The multidisciplinary character of Trieste as a research center and its high concentration of scientific institutions played a key role in this important scientific project. “Trieste has a tradition of excellence in the fields of numerical simulation and of experimental analysis of matter, as well as in the design and development of industrial catalysts” conclude Giovanni Comelli and Renzo Rosei of the Department of Physics at the University of Trieste, who coordinated the project.

Mauro Scanu | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>