Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny heaters may pave way for easier tissue engineering, medical sensors

08.01.2004


Tiny microheaters that can prompt chemical changes in surrounding material may provide the means to more easily grow replacement tissue for injured patients and form the basis for medical sensors that could quickly detect pathogens, according to researchers at the University of Washington who are the first to demonstrate the process.



The key to the technique, according to Associate Professor Karl Böhringer in the UW’s Department of Electrical Engineering, lies in temperature-driven changes in the material with which the less-than-one-millimeter-wide electric heaters are coated. Proteins stick to the material as its temperature rises, and release when it goes back down. That, according to Böhringer, opens the door to a wide array of possibilities.

"The proteins stick locally to the areas we heat, and we can stick cells to the proteins," he said. "This provides a relatively simple, low cost way of creating cell chips to run experiments and to create other useful devices."


Böhringer and colleague Buddy Ratner, director of the UW Engineered Biomaterials program, presented the research recently at the 12th International Conference on Solid-State Sensors, Actuators and Microsystems in Boston, and a patent is pending for the process.

To make the chips, researchers started with a thin slide of glass, on which they built arrays of microheaters using lithographic techniques. They then deposited poly-N-isopropylacrylamide (pNIPAM), a temperature sensitive polymer, onto the microheater arrays.

At temperatures below about 90 degrees Fahrenheit in a liquid environment, the polymer exists in a water-saturated, gel-like state. But when the temperature exceeds that threshold, the polymer’s chemical properties change. It becomes water-repellant and allows proteins to stick to it.

"When you go above this low critical solution temperature, there is a transition from the gel-like wet state to a dry, more dense state, but there also is a conformational, or shape, change in the molecules," Böhringer explained. "There are some end groups in the molecule that flip around and essentially show another end of the molecule to the surface, and the proteins like to stick to that end."

By turning on different portions of the heating array while the chip is exposed to different solutions, the researchers found that they could selectively attach different proteins in pre-determined patterns. And, since certain cells attach to certain proteins, researchers could use the method to layer proteins and cells, custom-designing chips that feature different cells grouped in whatever patterns the scientists need.

At the research level, Böhringer said, this could help make efficient use of time and funding.

"You could create a chip that runs a number of different experiments at the same time," he said.

There are also powerful applications outside the research lab, he added. The technique could be used to fashion biosensors or diagnostic devices.

"We could have arrays of proteins or cells with specific functions – they may be sensitive to a pathogen, for example," he said. "You could watch the array as it’s exposed to some unknown sample and see how it reacts."

Medical applications are another promising area. Since the arrays can be positioned however one wants, they could be used to grow tissue in specific shapes.

"We can basically create shapes of cell cultures," Böhringer said. "Then if you switch off the heater, the attachment ends and the whole cell culture lifts off. So it may be a way of making, for example, a replacement skin graft. You grow it on the surface, prompt it to lift off, and you could transplant it. That could directly follow from this."


Other contributors to the project include Denice D. Denton, Ashutosh Shastry, Yael Hanein, Xuanhong Cheng and Yanbing Wang, all with the UW. Funding for the research came from the UWEB Research Center, the UW’s NIH Microscale Life Sciences Center and the National Science Foundation.

For more information, contact Böhringer at 206-221-5177 or karl@ee.washington.edu. A paper detailing the process is available on the Web at: http://www.ee.washington.edu/research/mems/publications/2003/conferences/transducers-ywang-03.pdf

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>