Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny heaters may pave way for easier tissue engineering, medical sensors

08.01.2004


Tiny microheaters that can prompt chemical changes in surrounding material may provide the means to more easily grow replacement tissue for injured patients and form the basis for medical sensors that could quickly detect pathogens, according to researchers at the University of Washington who are the first to demonstrate the process.



The key to the technique, according to Associate Professor Karl Böhringer in the UW’s Department of Electrical Engineering, lies in temperature-driven changes in the material with which the less-than-one-millimeter-wide electric heaters are coated. Proteins stick to the material as its temperature rises, and release when it goes back down. That, according to Böhringer, opens the door to a wide array of possibilities.

"The proteins stick locally to the areas we heat, and we can stick cells to the proteins," he said. "This provides a relatively simple, low cost way of creating cell chips to run experiments and to create other useful devices."


Böhringer and colleague Buddy Ratner, director of the UW Engineered Biomaterials program, presented the research recently at the 12th International Conference on Solid-State Sensors, Actuators and Microsystems in Boston, and a patent is pending for the process.

To make the chips, researchers started with a thin slide of glass, on which they built arrays of microheaters using lithographic techniques. They then deposited poly-N-isopropylacrylamide (pNIPAM), a temperature sensitive polymer, onto the microheater arrays.

At temperatures below about 90 degrees Fahrenheit in a liquid environment, the polymer exists in a water-saturated, gel-like state. But when the temperature exceeds that threshold, the polymer’s chemical properties change. It becomes water-repellant and allows proteins to stick to it.

"When you go above this low critical solution temperature, there is a transition from the gel-like wet state to a dry, more dense state, but there also is a conformational, or shape, change in the molecules," Böhringer explained. "There are some end groups in the molecule that flip around and essentially show another end of the molecule to the surface, and the proteins like to stick to that end."

By turning on different portions of the heating array while the chip is exposed to different solutions, the researchers found that they could selectively attach different proteins in pre-determined patterns. And, since certain cells attach to certain proteins, researchers could use the method to layer proteins and cells, custom-designing chips that feature different cells grouped in whatever patterns the scientists need.

At the research level, Böhringer said, this could help make efficient use of time and funding.

"You could create a chip that runs a number of different experiments at the same time," he said.

There are also powerful applications outside the research lab, he added. The technique could be used to fashion biosensors or diagnostic devices.

"We could have arrays of proteins or cells with specific functions – they may be sensitive to a pathogen, for example," he said. "You could watch the array as it’s exposed to some unknown sample and see how it reacts."

Medical applications are another promising area. Since the arrays can be positioned however one wants, they could be used to grow tissue in specific shapes.

"We can basically create shapes of cell cultures," Böhringer said. "Then if you switch off the heater, the attachment ends and the whole cell culture lifts off. So it may be a way of making, for example, a replacement skin graft. You grow it on the surface, prompt it to lift off, and you could transplant it. That could directly follow from this."


Other contributors to the project include Denice D. Denton, Ashutosh Shastry, Yael Hanein, Xuanhong Cheng and Yanbing Wang, all with the UW. Funding for the research came from the UWEB Research Center, the UW’s NIH Microscale Life Sciences Center and the National Science Foundation.

For more information, contact Böhringer at 206-221-5177 or karl@ee.washington.edu. A paper detailing the process is available on the Web at: http://www.ee.washington.edu/research/mems/publications/2003/conferences/transducers-ywang-03.pdf

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>