Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny heaters may pave way for easier tissue engineering, medical sensors

08.01.2004


Tiny microheaters that can prompt chemical changes in surrounding material may provide the means to more easily grow replacement tissue for injured patients and form the basis for medical sensors that could quickly detect pathogens, according to researchers at the University of Washington who are the first to demonstrate the process.



The key to the technique, according to Associate Professor Karl Böhringer in the UW’s Department of Electrical Engineering, lies in temperature-driven changes in the material with which the less-than-one-millimeter-wide electric heaters are coated. Proteins stick to the material as its temperature rises, and release when it goes back down. That, according to Böhringer, opens the door to a wide array of possibilities.

"The proteins stick locally to the areas we heat, and we can stick cells to the proteins," he said. "This provides a relatively simple, low cost way of creating cell chips to run experiments and to create other useful devices."


Böhringer and colleague Buddy Ratner, director of the UW Engineered Biomaterials program, presented the research recently at the 12th International Conference on Solid-State Sensors, Actuators and Microsystems in Boston, and a patent is pending for the process.

To make the chips, researchers started with a thin slide of glass, on which they built arrays of microheaters using lithographic techniques. They then deposited poly-N-isopropylacrylamide (pNIPAM), a temperature sensitive polymer, onto the microheater arrays.

At temperatures below about 90 degrees Fahrenheit in a liquid environment, the polymer exists in a water-saturated, gel-like state. But when the temperature exceeds that threshold, the polymer’s chemical properties change. It becomes water-repellant and allows proteins to stick to it.

"When you go above this low critical solution temperature, there is a transition from the gel-like wet state to a dry, more dense state, but there also is a conformational, or shape, change in the molecules," Böhringer explained. "There are some end groups in the molecule that flip around and essentially show another end of the molecule to the surface, and the proteins like to stick to that end."

By turning on different portions of the heating array while the chip is exposed to different solutions, the researchers found that they could selectively attach different proteins in pre-determined patterns. And, since certain cells attach to certain proteins, researchers could use the method to layer proteins and cells, custom-designing chips that feature different cells grouped in whatever patterns the scientists need.

At the research level, Böhringer said, this could help make efficient use of time and funding.

"You could create a chip that runs a number of different experiments at the same time," he said.

There are also powerful applications outside the research lab, he added. The technique could be used to fashion biosensors or diagnostic devices.

"We could have arrays of proteins or cells with specific functions – they may be sensitive to a pathogen, for example," he said. "You could watch the array as it’s exposed to some unknown sample and see how it reacts."

Medical applications are another promising area. Since the arrays can be positioned however one wants, they could be used to grow tissue in specific shapes.

"We can basically create shapes of cell cultures," Böhringer said. "Then if you switch off the heater, the attachment ends and the whole cell culture lifts off. So it may be a way of making, for example, a replacement skin graft. You grow it on the surface, prompt it to lift off, and you could transplant it. That could directly follow from this."


Other contributors to the project include Denice D. Denton, Ashutosh Shastry, Yael Hanein, Xuanhong Cheng and Yanbing Wang, all with the UW. Funding for the research came from the UWEB Research Center, the UW’s NIH Microscale Life Sciences Center and the National Science Foundation.

For more information, contact Böhringer at 206-221-5177 or karl@ee.washington.edu. A paper detailing the process is available on the Web at: http://www.ee.washington.edu/research/mems/publications/2003/conferences/transducers-ywang-03.pdf

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>