Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny heaters may pave way for easier tissue engineering, medical sensors

08.01.2004


Tiny microheaters that can prompt chemical changes in surrounding material may provide the means to more easily grow replacement tissue for injured patients and form the basis for medical sensors that could quickly detect pathogens, according to researchers at the University of Washington who are the first to demonstrate the process.



The key to the technique, according to Associate Professor Karl Böhringer in the UW’s Department of Electrical Engineering, lies in temperature-driven changes in the material with which the less-than-one-millimeter-wide electric heaters are coated. Proteins stick to the material as its temperature rises, and release when it goes back down. That, according to Böhringer, opens the door to a wide array of possibilities.

"The proteins stick locally to the areas we heat, and we can stick cells to the proteins," he said. "This provides a relatively simple, low cost way of creating cell chips to run experiments and to create other useful devices."


Böhringer and colleague Buddy Ratner, director of the UW Engineered Biomaterials program, presented the research recently at the 12th International Conference on Solid-State Sensors, Actuators and Microsystems in Boston, and a patent is pending for the process.

To make the chips, researchers started with a thin slide of glass, on which they built arrays of microheaters using lithographic techniques. They then deposited poly-N-isopropylacrylamide (pNIPAM), a temperature sensitive polymer, onto the microheater arrays.

At temperatures below about 90 degrees Fahrenheit in a liquid environment, the polymer exists in a water-saturated, gel-like state. But when the temperature exceeds that threshold, the polymer’s chemical properties change. It becomes water-repellant and allows proteins to stick to it.

"When you go above this low critical solution temperature, there is a transition from the gel-like wet state to a dry, more dense state, but there also is a conformational, or shape, change in the molecules," Böhringer explained. "There are some end groups in the molecule that flip around and essentially show another end of the molecule to the surface, and the proteins like to stick to that end."

By turning on different portions of the heating array while the chip is exposed to different solutions, the researchers found that they could selectively attach different proteins in pre-determined patterns. And, since certain cells attach to certain proteins, researchers could use the method to layer proteins and cells, custom-designing chips that feature different cells grouped in whatever patterns the scientists need.

At the research level, Böhringer said, this could help make efficient use of time and funding.

"You could create a chip that runs a number of different experiments at the same time," he said.

There are also powerful applications outside the research lab, he added. The technique could be used to fashion biosensors or diagnostic devices.

"We could have arrays of proteins or cells with specific functions – they may be sensitive to a pathogen, for example," he said. "You could watch the array as it’s exposed to some unknown sample and see how it reacts."

Medical applications are another promising area. Since the arrays can be positioned however one wants, they could be used to grow tissue in specific shapes.

"We can basically create shapes of cell cultures," Böhringer said. "Then if you switch off the heater, the attachment ends and the whole cell culture lifts off. So it may be a way of making, for example, a replacement skin graft. You grow it on the surface, prompt it to lift off, and you could transplant it. That could directly follow from this."


Other contributors to the project include Denice D. Denton, Ashutosh Shastry, Yael Hanein, Xuanhong Cheng and Yanbing Wang, all with the UW. Funding for the research came from the UWEB Research Center, the UW’s NIH Microscale Life Sciences Center and the National Science Foundation.

For more information, contact Böhringer at 206-221-5177 or karl@ee.washington.edu. A paper detailing the process is available on the Web at: http://www.ee.washington.edu/research/mems/publications/2003/conferences/transducers-ywang-03.pdf

Rob Harrill | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>