Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunny times ahead for cheaper solar power

28.03.2003


Greater use of clean electricity from the sun should be a step closer, thanks to new research carried out in the UK.



The research has shown how the cost of generating solar electricity can be reduced, laying the foundation for a major expansion in the use of this sustainable energy technology.

The project has been undertaken by a team of physicists, chemists, material scientists and engineers at Sheffield Hallam University, with funding from the Swindon-based Engineering and Physical Sciences Research Council.


Electricity generation through the interaction of the sun’s heat and light with semiconductors is called photovoltaics (PV). Although PV’s environmental benefits are well-known, take-up of the technology has been limited by the relatively high cost of the solar cells that incorporate these semiconductors.

The team at Sheffield Hallam University has been exploring a range of options for cutting costs. These include the use of a low-cost semiconductor production method called electrodeposition, less reliance on expensive semiconductor materials, and the identification of alternative solar cell devices and manufacturing techniques offering higher conversion efficiencies.

Higher conversion efficiencies mean that more power can be produced per cell and that the cost of each unit of electricity generated is reduced. In the past, limited understanding of the scientific principles underlying PV meant that average solar cell efficiencies only improved from 15.9% to 16.5% between 1992 and 2001 for cadmium telluride based solar cells. By formulating a new “model” to describe the photovoltaic activity of these solar cells, the Sheffield Hallam Team has significantly improved this understanding and produced devices with 18% efficiency. This has opened up the prospect of new solar cells being developed commercially with higher conversion efficiencies than those currently available.

The research has been led by Dr I M Dharmadasa, who says: “We’ve already applied for two patents and are preparing the final draft of the third patent in connection with our work, but there’s a lot more science to be explored that could increase conversion efficiencies to over 20% in the near future”.

Jane Reck | alfa

More articles from Power and Electrical Engineering:

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht A simple additive to improve film quality
19.09.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>