Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reliable systems for recharging electric vehicles

01.04.2015

The success of electric vehicle networks depends on economical vehicles – and efficient power grids. Existing power lines were not designed for the loads generated by electric vehicles. Fraunhofer researchers have developed prototype software to show grid operators how many electric vehicles can be connected to their local grid.

The rising number of electric vehicles on the road is putting grid operators under pressure. Low voltage networks for domestic consumers are not designed for the kind of loads that are generated by recharging electric vehicles at home.


Fraunhofer has developed a software program that shows grid operators how much load their low voltage network can handle.

© OpenStreetMap/Fraunhofer IOSB-AST

“A vehicle draws up to 22 kilowatts (KW) of power. So if you have multiple vehicles plugged in at the same time, then current grids quickly reach their limits,” says Dr. Michael Agsten from the Advanced System Technology (AST) department at the Ilmenau site of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB.

Together with his team of researchers, Agsten has developed a software program that shows grid operators how much load their low voltage network can handle. This enables them to draw conclusions on how many electric vehicles can be connected to the grid without pushing it to its limits. Grid operators can then plan in advance and find answers to key questions. For example: how will connecting one more vehicle affect the load distribution? At what point should we invest in our networks to ensure we maintain enough capacity? Is it better to spend money on new copper cables or invest in smart charge spots?

A prototype of the software program has already been created as part of the “Managed Charging 3.0” project sponsored by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). “The IT platform is already running very smoothly in the laboratory with test data. In the next stage we’re hoping to analyze real distribution grids,” says Agsten.

Fast random sampling

The software shows how many charging processes can run simultaneously without hitting the limits set by statutory requirements or by the grid operator. Each electricity substation typically supplies power to 150 or more households. If you assume that a certain proportion of households will own an electric vehicle in the future and plug the vehicle in at some point in time, then you are left with an inconceivably high number of charging scenarios. That’s because it’s impossible to predict which households will charge their electric vehicles at any one point in time.

“It’s impossible to calculate that in the time available,” Agsten explains. The researchers therefore decided to simulate their model using the Monte Carlo method, a form of stochastic modeling. The aim is to produce a group of combinations that is as heterogeneous as possible. The number of these combinations is significantly smaller than the total number of all possible combinations.

“It’s far quicker to analyze somewhere between 1,000 and 10,000 cases, and that still gives you a very good approximate value,” says Agsten. In a matter of seconds the software program shows the degree of overload risk and how many electric vehicles can be charged simultaneously in a local grid.

Distribution grid operators can use these figures to protect their power grids from long-term damage and sudden outages. In Germany there are around 560,000 local grids which are divided among approximately 800 grid operators. Each operator is responsible for the reliable and stable operation of their distribution networks and local grids and is required to meet demand by carrying out measures such as smart management and grid expansion where necessary.

These companies do not have enough personnel to manually calculate how many electric vehicles can safely be connected to each individual distribution network. Even if they did, the cost would be prohibitive. It took relatively little time to calculate how many household appliances such as washing machines, ovens, televisions and computers could be connected simultaneously before limits were reached. And in fact the standard upper limit of up to 44 KW/63A per household has only been tested in exceptional cases. But nobody figured in the power required to charge electric vehicles.

“Charging electric vehicles leads to a significantly higher household power draw – and the problem is exacerbated if people charge multiple vehicles at home at different times of the day,” says Agsten. Key parameters such as voltage stability, component thermal load and voltage imbalance fluctuate constantly based on the changing volatile load of electric vehicles according to time and place.

Each time another electric vehicle is plugged in, this increases the number of possible combinations of simultaneous charging situations distributed geographically and over time. The current processes used for testing and installation are unable to take all the local boundary conditions into account.

“As the power draw continues to steadily increase, network operators will need to know as early as possible how much room they still have for maneuver. Otherwise they won’t know that the limits have been reached until their customers actually start reporting problems,” says Agsten.

The platform developed by Fraunhofer IOSB is designed to tackle the low voltage network, which is the lowest level of the electrical transmission and distribution grid. It uses a series of stages in the grid to connect the plug sockets in people’s houses with the high and extra high voltage networks.

These higher levels of the grid will be drawing on an increasing proportion of fluctuating renewable energy sources in the future. Electric vehicles could help balance out these fluctuations because they can also be used to store energy. “But that will work only if the power grid lets them connect in the first place!” Agsten notes.

Martin Käßler | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2015/april/reliable-systems-for-recharging-electric-vehicles.html

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>