Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reliable and extremely long-lasting – high-voltage power electronics for network expansion


How is it possible to increase the dielectric strength and reliability of power modules for medium- and high-voltage applications?

This question was addressed by scientists at Rogers Germany GmbH, an insulating substrate manufacturer based in Eschenbach, Germany, and the Fraunhofer Institute for Integrated Systems and Device Technology IISB in Erlangen.

Large DBC card with 24 different test designs for partial discharge tests.

Fraunhofer IISB

In the framework of the APEx research project, the researchers developed new construction and testing techniques for high-voltage modules. The project was supported by the German Federal Ministry for Education and Research (BMBF) for over two and a half years with approx. 1.3 million euros and was coordinated by the Fraunhofer IISB.

Today, power electronics systems are already found along the entire power generation chain – from the power station to the consumer. These systems continue to grow in importance due to the German federal government's decision to expand the energy networks.

Power electronic systems are the key components for an efficient transmission and distribution of electrical power and for ensuring network stability. Power modules with voltage classes up to 6.5 kV have become established in industrial drive technology and in rail technology. However, the new applications in energy technology make considerably higher demands of the dielectric strength and the reliability of these modules.

The main ceramic insulator, the socalled DBC insulating substrate (DBC: "Direct Bonded Copper") can be regarded as the central component of the power modules. The DBC substrate serves as a circuit carrier and accommodates the electronic power devices. The electrical contacting of the devices and the actual wiring of the circuit take place via a copper layer on the substrate surface that is formed by etching.

In the project "Construction and Testing Technology for Extremely Durable High-Voltage Modules" (APEx), it was possible to increase the dielectric strength of currently available DBC insulation ceramics using an optimized module design. In addition to specific material characteristics, the electrical field distribution in and around the insulator is a significant influencing factor, among others.

Increases in the electrical field strength especially occur at the edge structures of the etched copper layer. The field increases cause local insulation currents, socalled partial discharges, in the surrounding insulating material, which can considerably reduce the lifetime of the power modules. The amount of the field increases depends on the applied voltage on the one hand as well as strongly on the geometric form of the edge structure on the other. For this reason, it can be influenced in a relatively cost-neutral way.

To optimize the edge structures, the maximum field strengths that occur on different designs had to be simulated and associated with partial discharge measurements. A comprehensive, simulation-based preliminary investigation of the field strength distribution on the edge structures of the DBCs identified the principal geometric and material-specific influencing factors and allowed a basic theoretical understanding of the interactions.

This also required a review of the simulation tools as well as the models used, especially to circumvent so-called unavoidable singularities. In numerical simulation, the modeling of ideal edges can produce excessive values for the field strengths that occur. With the FEM simulation (FEM: "Finite Element Method") used for this, it is therefore essential to have the right lattice parameters and select suitable measuring points to be able to exclude gross distortions of the calculated field strength distributions.

The findings obtained from the simulations and the newly developed ideas were confirmed by partial discharge measurements on corresponding test designs with adapted edge structures. Thanks to the support of the BMBF, it is now also possible – in addition to purely indirect measurement – to detect the precise point or origin of partial discharges visually using a UV camera system at Fraunhofer IISB.

To increase the reliability and lifetime of power modules, tests were also carried out on coating systems in the framework of APEx. Filling microcracks and insulating gaps with suitable inorganic and organic materials considerably increased the mechanical resistance. Accelerated aging tests on module-oriented set-ups in temperature shock cabinets demonstrated the improved thermal fatigue resistance or storage stability of the DBC modules coated in this way.

APEx was supported in the framework of the BMBF support program "IKT 2020 – Research for Innovations". One objective of IKT 2020 is to develop innovative materials and components in electronics for the application field of energy supply.

On the basis of the modifications for DBC power modules studied in APEx, initial prototypes were produced at Rogers Germany GmbH. The optimization of the edge structures as well as the coating technology can be used individually or in combination to improve the product characteristics. The methods can be used on existing DBC layouts as well as on standardized power module dimensions.

The continued decentralization of the energy supply in the medium- and high-voltage sector suggests an increasing demand for breaker cells with an extremely long lifetime of 40 or more years in continuous operation as well as with high dielectric strength. Last but not least, this makes the availability of such components strategically important for the energy industry.

Images for editorial use can be found at


Andreas Schletz
Fraunhofer Institute for Integrated Systems and Device Technology IISB
Schottkystrasse 10, 91058 Erlangen, Germany
Phone +49 911 23568 - 27
Fax +49 911 23568 - 12

Fraunhofer IISB

Founded in 1985, the Fraunhofer Institute for Integrated Systems and Device Technology IISB conducts applied research and development in the fields of power electronics, mechatronics, microelectronics and nanoelectronics. The work of the institute in power electronic systems for energy efficiency, hybrid and electrical automobiles as well as in technology, device and material development for nanoelectronics enjoys international attention and recognition.
In the business area of power electronics, the primary focus is on topics such as innovative circuit and system solutions for highly efficient and compact power converters, mechatronic 3D integration, multifunctional integration and use of new materials and semiconductor devices. Application fields include e.g. electrical energy transmission, drive technology, switching power supplies and voltage transducers, components for vehicle technology and vehicle models, construction and connection technology for passive and active power modules as well as lifetime and reliability tests. Fraunhofer IISB additionally has extensive experience in the area of error analysis. This applies to all levels of electronic circuits, from chips to chip contacting, housings and circuit carriers or insulation substrates, up to passive devices.
Around 230 employees work in contract research for industry and public institutions. In addition to its headquarters in Erlangen, the IISB also has two further locations in Nuremberg and Freiberg. The IISB closely cooperates with the Chair of Electron Devices at the Friedrich-Alexander-University Erlangen-Nuremberg.

Weitere Informationen: Press release and Images for editorial use.

Presse Institute | Fraunhofer-Gesellschaft

Further reports about: BMBF COPPER Device IISB circuit drive technology energy supply material measurements voltage

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>