Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaics and Photosynthesis

20.09.2016

Pilot Plant at Lake Constance Combines Electricity and Crop Production

In 1981, an article by Prof. Adolf Goetzberger titled "Potatoes under the Collector" was published in the German magazine “Sonnenenergie”. The article proposed a particularly favorable setup for solar energy systems in combination with agricultural land use. After smoldering on the backburner for a couple of years, the concept of agrophotovoltaics (APV), that is, the dual usage of land for crop and electricity production, was again taken up by researchers at Fraunhofer ISE in 2011.


The agrophotovoltaics (APV) pilot plant located in Heggelbach near Lake Constance couples the production of electricity and food crops

©Fraunhofer ISE

Now the scientists at Fraunhofer ISE together with their partners in the project "APV-Resola" are reaping the benefits from Goetzberger’s original article: On September 18, 2016 an operating APV pilot system – the largest research project of its kind in Germany – was inaugurated on location at Lake Constance. On this occasion the project was also presented with a prize from the "Germany – Land of Ideas" initiative.

Over the past decade, Germany has experienced rapid growth in ground-mounted photovoltaic (PV) installations, leading to competition for land between renewable energy producers and farmers.

Now researchers at the Fraunhofer Institute for Solar Energy Systems ISE have taken the idea presented by the Institute’s founder Adolf Goetzberger in 1981 and made it a reality together with their project partners: BayWa r. e. renewable enrgy, the energy supplier "Elektrizitätswerke Schönau (EWS)", the Demeter farm community "Hofgemeinschaft Heggelbach", the Institute for Technology Assessment and Systems Analysis (ITAS) of the Karlsruhe Institute for Technology (KIT), the University of Hohenheim, the Regional Association of Lake Constance-Upper Swabia and the local citizens.

The innovative APV pilot system demonstrates the resourceful tandem use of acreage, facilitating the production of crops located underneath ground-mounted PV arrays. "In view of the dynamic worldwide growth of photovoltaic installations over the last decade and the resulting increase in land usage for PV systems, innovative concepts, like agrophotovoltaics which facilitates the dual usage of agricultural land, help to further and accelerate the transformation of the global energy system,” says Prof. Dr. Eicke R. Weber, Institute Director at Fraunhofer ISE.

In March 2015, the APV project group began work on the installation in the Lake Constance-Upper Swabian region, after performing numerous investigations, modeling and simulation research. The APV pilot system is installed and operates on land belonging to the organic farming community “Hofgemeinschaft Heggelbach”. Two and a half hectares were delegated for this purpose.

The APV system takes up about one third hectare. Beneath the PV modules, which tower five meters above the ground, four different crops were planted for the project duration: wheat, trefoil, potatoes and celeriac. Next to the APV system, the project team planted the same crops over an equivalent area (without PV modules) as a reference. The scientists use this direct reference to determine which type of vegetables or crops are particularly suitable for use with APV installations, that is, the most efficient coupling strategy.

The APV system has an installed power of 194 kWp, which covers the annual electricity demand of about 62 households. The surplus electricity is fed into the grid of the energy provider "Elektrizitätswerke Schönau". So-called "bifacial PV modules" from the German module company SolarWorld are used in the APV system. These modules not only convert the solar energy incident on the front side of the modules but also the reflected ambient solar energy incident on the rear into electricity.

This produces a higher energy yield per unit area and provides a more homogeneous light distribution on the crops growing underneath the APV system. “The agricultural sector is faced with the challenge of the largely expanding renewable energy sector and with managing the competitive interests of farming and energy production,” says Stephan Schindele, project head at Fraunhofer ISE. “In this context, agrophotovoltaics can serve as a trend-setting solution for the future."

A special supporting structure was developed together with the Austrian solar technology manufacturer Hilber Solar. The support structure was designed to fit the specific requirements on the premises. Due to its modular construction, the structure can be flexibly adapted for other installation sites with minimum expenditure. "We are looking forward to the results of the practical experience with the APV pilot system," says Thomas Schmid of the Demeter farm community "Hofgemeinschaft Heggelbach."

"For us, it is important that the system is simple to operate and that the crop yield from underneath the APV system is at least 80 percent of that from the reference crop.” The crops under the APV system in Heggelbach are to be harvested in the summers of 2017 and 2018. After two years’ experience, the results from the different yields will be analyzed and published in a final report.
The Project "Agrophotovoltaics – Resource-Efficient Land Use” (APV-Resola) and its Partners:

The project "APV-Resola" is sponsored by the German Federal Ministry for Education and Research (BMBF) and FONA (Research for Sustainable Development). It follows the Living Lab approach that is based on an inter- and trans-disciplinary cooperation, integrating both potential users of new technologies and the general public in the innovation process. "APV-Resola" is a cooperative project between partners from the agricultural, scientific, technical sectors and local inhabitants:

Fraunhofer ISE is project head and is responsible for the technical and energy economics-related aspects. The Faculty for Agricultural Sciences at the University of Hohenheim carries out the agricultural research and ecological analysis. The Institute for Technical Assessment and System Analysis (ITAS) of the Karlsruhe Institute for Technology (KIT) is responsible for the concept and realization of the Living Lab approach. The surplus electricity is fed into the grid of the electricity supplier EWS Schönau.

BayWa r. e. is in charge of the planning and maintenance of the APV system. The Demeter farm community “Hofgemeinschaft Heggelbach” has provided the land for the APV pilot system and uses the electricity produced by the system for its own consumption. The Regional Association of Lake Constance-Upper Swabia supports the project on the regional and communal level.

Weitere Informationen:

http://www.ise.fraunhofer.de/en - Fraunhofer ISE
https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2... - Picture Gallery: Agrophotovoltaics (APV) pilot plant Heggelbach

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>