Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photovoltaics and Photosynthesis

20.09.2016

Pilot Plant at Lake Constance Combines Electricity and Crop Production

In 1981, an article by Prof. Adolf Goetzberger titled "Potatoes under the Collector" was published in the German magazine “Sonnenenergie”. The article proposed a particularly favorable setup for solar energy systems in combination with agricultural land use. After smoldering on the backburner for a couple of years, the concept of agrophotovoltaics (APV), that is, the dual usage of land for crop and electricity production, was again taken up by researchers at Fraunhofer ISE in 2011.


The agrophotovoltaics (APV) pilot plant located in Heggelbach near Lake Constance couples the production of electricity and food crops

©Fraunhofer ISE

Now the scientists at Fraunhofer ISE together with their partners in the project "APV-Resola" are reaping the benefits from Goetzberger’s original article: On September 18, 2016 an operating APV pilot system – the largest research project of its kind in Germany – was inaugurated on location at Lake Constance. On this occasion the project was also presented with a prize from the "Germany – Land of Ideas" initiative.

Over the past decade, Germany has experienced rapid growth in ground-mounted photovoltaic (PV) installations, leading to competition for land between renewable energy producers and farmers.

Now researchers at the Fraunhofer Institute for Solar Energy Systems ISE have taken the idea presented by the Institute’s founder Adolf Goetzberger in 1981 and made it a reality together with their project partners: BayWa r. e. renewable enrgy, the energy supplier "Elektrizitätswerke Schönau (EWS)", the Demeter farm community "Hofgemeinschaft Heggelbach", the Institute for Technology Assessment and Systems Analysis (ITAS) of the Karlsruhe Institute for Technology (KIT), the University of Hohenheim, the Regional Association of Lake Constance-Upper Swabia and the local citizens.

The innovative APV pilot system demonstrates the resourceful tandem use of acreage, facilitating the production of crops located underneath ground-mounted PV arrays. "In view of the dynamic worldwide growth of photovoltaic installations over the last decade and the resulting increase in land usage for PV systems, innovative concepts, like agrophotovoltaics which facilitates the dual usage of agricultural land, help to further and accelerate the transformation of the global energy system,” says Prof. Dr. Eicke R. Weber, Institute Director at Fraunhofer ISE.

In March 2015, the APV project group began work on the installation in the Lake Constance-Upper Swabian region, after performing numerous investigations, modeling and simulation research. The APV pilot system is installed and operates on land belonging to the organic farming community “Hofgemeinschaft Heggelbach”. Two and a half hectares were delegated for this purpose.

The APV system takes up about one third hectare. Beneath the PV modules, which tower five meters above the ground, four different crops were planted for the project duration: wheat, trefoil, potatoes and celeriac. Next to the APV system, the project team planted the same crops over an equivalent area (without PV modules) as a reference. The scientists use this direct reference to determine which type of vegetables or crops are particularly suitable for use with APV installations, that is, the most efficient coupling strategy.

The APV system has an installed power of 194 kWp, which covers the annual electricity demand of about 62 households. The surplus electricity is fed into the grid of the energy provider "Elektrizitätswerke Schönau". So-called "bifacial PV modules" from the German module company SolarWorld are used in the APV system. These modules not only convert the solar energy incident on the front side of the modules but also the reflected ambient solar energy incident on the rear into electricity.

This produces a higher energy yield per unit area and provides a more homogeneous light distribution on the crops growing underneath the APV system. “The agricultural sector is faced with the challenge of the largely expanding renewable energy sector and with managing the competitive interests of farming and energy production,” says Stephan Schindele, project head at Fraunhofer ISE. “In this context, agrophotovoltaics can serve as a trend-setting solution for the future."

A special supporting structure was developed together with the Austrian solar technology manufacturer Hilber Solar. The support structure was designed to fit the specific requirements on the premises. Due to its modular construction, the structure can be flexibly adapted for other installation sites with minimum expenditure. "We are looking forward to the results of the practical experience with the APV pilot system," says Thomas Schmid of the Demeter farm community "Hofgemeinschaft Heggelbach."

"For us, it is important that the system is simple to operate and that the crop yield from underneath the APV system is at least 80 percent of that from the reference crop.” The crops under the APV system in Heggelbach are to be harvested in the summers of 2017 and 2018. After two years’ experience, the results from the different yields will be analyzed and published in a final report.
The Project "Agrophotovoltaics – Resource-Efficient Land Use” (APV-Resola) and its Partners:

The project "APV-Resola" is sponsored by the German Federal Ministry for Education and Research (BMBF) and FONA (Research for Sustainable Development). It follows the Living Lab approach that is based on an inter- and trans-disciplinary cooperation, integrating both potential users of new technologies and the general public in the innovation process. "APV-Resola" is a cooperative project between partners from the agricultural, scientific, technical sectors and local inhabitants:

Fraunhofer ISE is project head and is responsible for the technical and energy economics-related aspects. The Faculty for Agricultural Sciences at the University of Hohenheim carries out the agricultural research and ecological analysis. The Institute for Technical Assessment and System Analysis (ITAS) of the Karlsruhe Institute for Technology (KIT) is responsible for the concept and realization of the Living Lab approach. The surplus electricity is fed into the grid of the electricity supplier EWS Schönau.

BayWa r. e. is in charge of the planning and maintenance of the APV system. The Demeter farm community “Hofgemeinschaft Heggelbach” has provided the land for the APV pilot system and uses the electricity produced by the system for its own consumption. The Regional Association of Lake Constance-Upper Swabia supports the project on the regional and communal level.

Weitere Informationen:

http://www.ise.fraunhofer.de/en - Fraunhofer ISE
https://www.ise.fraunhofer.de/en/press-and-media/press-releases/press-releases-2... - Picture Gallery: Agrophotovoltaics (APV) pilot plant Heggelbach

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>