Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paradigm Shift to Mott device-based Power Interruption

02.11.2015

Researchers in Korea have overcome a 100-year old technological limitation by fabricating the world's first Mott device that reduces the size and enhances the performance of traditional electromagnetic switches and circuit breakers.

The research team, led by Dr. Hyun-Tak Kim of Korea’s Electronics and Telecommunications Research Institute, has developed an innovative power interruption technology based on a Mott metal-insulator transition (Mott MIT) device.


Left figure shows the temperature dependence of resistance of the developed Mott MIT VO2 device and its photo. Right side exhibits the commercial overload relay and magnetic contact (electromagnet) and the developed electromagnetic switch.

The Mott MIT signifies the phenomenon that a Mott insulator is abruptly converted into a metal or vice versa without the structural phase transition. The research team previously developed a Mott MIT critical temperature switch (CTS) (or MIT device) which generates a control current (or signal) at a critical temperature between 67oC and 85oC as the unique characteristic of vanadium dioxide. After that, the MIT devices were applied to some kinds of electromagnetic switches that interrupt an electric current in case of overcurrent.

An existing traditional electromagnetic switch that takes the role to interrupt electricity through the mechanical switching when it conducts an overcurrent is composed of both an electromagnet called the magnetic contactor, which connects or disconnects signals of main power, and the thermal overload relay with an on-off switching function controlled by temperature.

The overload relay is composed of both an expensive delicate mechanical switch with a large size and a bimetal that is made of two separate metals with different thermal expansion coefficients joined together. The bimetal has a characteristic of bending to any direction when heat is applied.

The bending force of the bimetal controls the mechanical switch inducing the on-off switching; this has been called ‘hundred years technology of power interruption’; Westinghouse applied the patent right of the power circuit breaker using a bimetal in 1924. However, the bimetal undergoes a change of the bending characteristic during a long-term usage. Therefore, the accuracy of the overload relay drops.

Finally, the performance of electromagnetic switch is also deteriorated; this is a fatal problem of the existing traditional electromagnetic switch.

In order to solve the problem, the research team uses the MIT-CTS instead of the bimetal as a sensor for the on-off switch. In this case, the mechanical switch is replaced by a simple electrical circuit controlling the electromagnet, which means that the mechanical switching is changed into the electronic one. Therefore, the MIT overload relay becomes small in size by removing the large mechanical switch and has the accuracy irrespective of environment temperature during long term. Accordingly, the MIT electromagnetic switch has a reliable and accurate electronic switching characteristic.

The research team confirmed that the developed MIT electromagnetic switch is satisfied with the operating conditions of the overload relay given in a Korean technology standard, Article 5.6, KSC 4504 compatible with the international standard 60947-4-1. The team also checked through experiments that the circuit breaker using the bimetal operated below AC 1 KV can be replaced by that made of the developed MIT electromagnetic switching technology.

A market report on “The World Market For Transmission & Distribution Equipment and Systems” (Gould Report, 2013) announced that the sales of the worldwide power switch and circuit breaker markets will reach to approximate $29.5 billion in 2016.


For more information, please contact
ETRI
Dr. Hyun-Tak Kim
E-mail : htkim@etri.re.kr
Tel: +82 42 860 5731)


About ETRI
Established in 1976, ETRI is a non-profit Korean government-funded research organization that has been at the forefront of technological excellence for about 40 years. In the 1980s, ETRI developed TDX(Time Division Exchange) and 4M DRAM. In the 1990s, ETRI commercialized CDMA(Code Division Multiple Access) for the first time in the world. In the 2000s, ETRI developed Terrestrial DMB, WiBro, and 4G LTE Advanced, which became the foundation of mobile communications. Recently, as a global ICT leader, ETRI has been advancing communication and convergence by developing SAN(Ship Area Network) technology, Genie Talk(world class portable automatic interpretation; Korean-English/Japanese/Chinese), and automated valet parking technology. As of 2015, ETRI has about 2,000 employees where about 1,800 of them are researchers.
* Homepage : https://www.etri.re.kr/eng/main/main.etri


Associated links
Video and image on ETRI ewebzine
ETRI Homepage

Noh Hoon PARK | Research SEA

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>