Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Optic fiber for recording the temperature in extreme industrial environments


Optic fiber is normally used in the field of telecommunications to transmit information using light, but a group of researchers at the Universidad Carlos III de Madrid (UC3M) has developed a technique that makes it possible to use optic fiber as a thermometer in extreme industrial environments.

The system they have developed is able to measure the temperature of mechanical or cutting processes in areas where conventional techniques do not have access. In these environments, thermographic infrared cameras cannot be used because there is not a clear line of vision to the tool’s cutting point, nor can thermocouples or other sensors be applied because of the deterioration they will suffer and the difficulty of establishing a good location for them due to inaccessibility. However, these researchers have solved this problem using a fiber optic pyrometer.

Fiber optics

Optic fiber is a means of transmission in which pulses of light that represent data are sent. Thanks to its small size (it measures 62.5 micra), optic fiber can fit into very small spaces. “To give you an idea, the diameter of a hair from a young person is, on average, about 100 micra”, the researchers comment. In this case, they have used optic fiber that is typical in telecommunications like those that are used to transmit high-speed signals on data networks.  

The pyrometer determines the temperature of a body by the amount of radiation that it emits: as the radiation increases, so does the temperature. It measures radiation in two colors and calculates the temperature based on the quotient of the two signals. This system is calibrated so that it can “start to measure at 300 degrees, and it could go up to one thousand degrees because the fiber, which is made of silica, can withstand very high temperatures,” explains Carmen Vázquez, a tenured professor in UC3M’s department of Electronic Technology and the coordinator of the project.

Obtaining data regarding temperature changes during cutting helps in the analysis of the evolution of wear on a tool. Consequently, “it is possible to optimize the life of the tool, thereby improving productivity,” explains Carmen. Furthermore, it is important to guarantee the superficial integrity of the mechanized material; in most cases, temperature is a parameter that is indicative of the damage caused by the mechanical system.

This system has applications in those environments where mechanized tools are used for manufacturing parts. It is relevant, for example, in the aerospace sector. During the mechanized production of parts of the components of motors, it is very important to “avoid extreme temperatures or changes in phases that are related to worse performance in fatigue.” Carmen Vázquez states that “the prototype could already be introduced in the field and be working in different machinery in the sector”. This system may also have applications in the biomedical field , as researchers have noted recent research published in the journal Sensors.

In addition to Carmen Vázquez, the researchers on this project are Alberto Tapetado, a doctoral student at UC3M, Henar Miguélez, a tenured professor in the Mechanical Engineering Department, José Díaz Álvarez, a professor in the Aerospace Engineering Department and Ernesto García, all from UC3M. This research has been carried out as part of a project of the National Plan (Plan Nacional) financed by the Ministry of Economics and Competitiveness (Ministerio de Economía y Competitividad) and the research program SINFOTON-CM financed by the Autonomous Community of Madrid (Comunidad de Madrid). Carried out by the Displays and Photonic Applications Groups (Displays y Aplicaciones Fotónicas) of the Department of Electronic Technology (Departamento de Tecnología Electrónica) with the collaboration of the Manufacturing Technology and Mechanical and Biomechanical Component Design Group of the Mechanical Engineering Department (Grupo de Tecnologías de Fabricación y Diseño de Componentes Mecánicos y Biomecánicos del Departamento de Ingeniería Mecánica).

Futher information:

Díaz-Álvarez, J, Cantero, J.L, Miguélez, H., Soldani, X., “Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718”. International Journal of Mechanical Sciences. 2014, vol. 82, p. 161-169

Moraleda AT, Montero DS, Webb DJ, García CV. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications. Sensors. 2014, december; 14(12):24029-24045.


Full bibliographic informationTapetado, C. Vázquez, X. Soldani, H. Miguélez, D. S. Montero. Temperature sensor based on fiber optic pyrometer in material removal processes. Proc. SPIE 8421, p. 84212V, 2012. doi:10.1117/12.970276

Ana María Herrera | AlphaGalileo

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>