Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optic fiber for recording the temperature in extreme industrial environments

19.01.2015

Optic fiber is normally used in the field of telecommunications to transmit information using light, but a group of researchers at the Universidad Carlos III de Madrid (UC3M) has developed a technique that makes it possible to use optic fiber as a thermometer in extreme industrial environments.

The system they have developed is able to measure the temperature of mechanical or cutting processes in areas where conventional techniques do not have access. In these environments, thermographic infrared cameras cannot be used because there is not a clear line of vision to the tool’s cutting point, nor can thermocouples or other sensors be applied because of the deterioration they will suffer and the difficulty of establishing a good location for them due to inaccessibility. However, these researchers have solved this problem using a fiber optic pyrometer.


Fiber optics

Optic fiber is a means of transmission in which pulses of light that represent data are sent. Thanks to its small size (it measures 62.5 micra), optic fiber can fit into very small spaces. “To give you an idea, the diameter of a hair from a young person is, on average, about 100 micra”, the researchers comment. In this case, they have used optic fiber that is typical in telecommunications like those that are used to transmit high-speed signals on data networks.  

The pyrometer determines the temperature of a body by the amount of radiation that it emits: as the radiation increases, so does the temperature. It measures radiation in two colors and calculates the temperature based on the quotient of the two signals. This system is calibrated so that it can “start to measure at 300 degrees, and it could go up to one thousand degrees because the fiber, which is made of silica, can withstand very high temperatures,” explains Carmen Vázquez, a tenured professor in UC3M’s department of Electronic Technology and the coordinator of the project.

Obtaining data regarding temperature changes during cutting helps in the analysis of the evolution of wear on a tool. Consequently, “it is possible to optimize the life of the tool, thereby improving productivity,” explains Carmen. Furthermore, it is important to guarantee the superficial integrity of the mechanized material; in most cases, temperature is a parameter that is indicative of the damage caused by the mechanical system.

This system has applications in those environments where mechanized tools are used for manufacturing parts. It is relevant, for example, in the aerospace sector. During the mechanized production of parts of the components of motors, it is very important to “avoid extreme temperatures or changes in phases that are related to worse performance in fatigue.” Carmen Vázquez states that “the prototype could already be introduced in the field and be working in different machinery in the sector”. This system may also have applications in the biomedical field , as researchers have noted recent research published in the journal Sensors.

In addition to Carmen Vázquez, the researchers on this project are Alberto Tapetado, a doctoral student at UC3M, Henar Miguélez, a tenured professor in the Mechanical Engineering Department, José Díaz Álvarez, a professor in the Aerospace Engineering Department and Ernesto García, all from UC3M. This research has been carried out as part of a project of the National Plan (Plan Nacional) financed by the Ministry of Economics and Competitiveness (Ministerio de Economía y Competitividad) and the research program SINFOTON-CM financed by the Autonomous Community of Madrid (Comunidad de Madrid). Carried out by the Displays and Photonic Applications Groups (Displays y Aplicaciones Fotónicas) of the Department of Electronic Technology (Departamento de Tecnología Electrónica) with the collaboration of the Manufacturing Technology and Mechanical and Biomechanical Component Design Group of the Mechanical Engineering Department (Grupo de Tecnologías de Fabricación y Diseño de Componentes Mecánicos y Biomecánicos del Departamento de Ingeniería Mecánica).

Futher information:

Díaz-Álvarez, J, Cantero, J.L, Miguélez, H., Soldani, X., “Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718”. International Journal of Mechanical Sciences. 2014, vol. 82, p. 161-169

Moraleda AT, Montero DS, Webb DJ, García CV. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications. Sensors. 2014, december; 14(12):24029-24045.  http://www.mdpi.com/1424-8220/14/12/24029

Video: http://youtu.be/IavHgC2G1G0 

http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/fiber_temperature

Full bibliographic informationTapetado, C. Vázquez, X. Soldani, H. Miguélez, D. S. Montero. Temperature sensor based on fiber optic pyrometer in material removal processes. Proc. SPIE 8421, p. 84212V, 2012. doi:10.1117/12.970276

Ana María Herrera | AlphaGalileo

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>