Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Open, flexible assembly platform for optical systems


The assembly of laser systems demands high-precision orientation of the optical components to one another. An assembly platform incorporating a micro-manipulator, which ensures flexible automation of this task, has been developed by the Fraunhofer Institute for Production Technology IPT in Aachen. This permits optical components for high-power diode lasers, miniaturized lenses or projectors for structured light, for example to be aligned and bonded automatically. The Fraunhofer IPT will be unveiling the new system in front of an expert audience at “SPIE Photonics West” from 28 January till 2 February 2017 in San Francisco.

The new equipment, developed by the Fraunhofer IPT, operates with the highest level of precision and is suitable for a diverse range of optics assembly tasks – not only for active alignment of optical components, but also for inspecting or arranging micro-components. The alignment unit in the system has six degrees of freedom at its disposal and is used in conjunction with a portal system. This provides a working space of up to 500 x 500 mm² for optics assembly.

The flexible and easily programmable assembly platform, tailored to the needs of micro-optical assembly processes.

Source: Fraunhofer IPT

The 500x500x300mm³ working space is made for interchangeable and customized assembly tasks that enable a responsive automated production.

Source: Fraunhofer IPT

Since the system can be controlled in virtually any programming language, it can be integrated swiftly and flexibly within a range of production environments. The technical configuration of the system can be selected individually and optional extras include feed modules or transfer systems for example.

The system can also execute specified standard processes such as side tab and bottom tab assembly in order to produce large volumes fully or partially automatically. Basic functionalities such as part tracking and evaluation of the overall system effectiveness or process capability are supplied. The micro-manipulator can additionally be hand-operated for quick prototyping tasks should the effort involved in programming and setting up for automation be deemed not to be worthwhile.

The diverse range of programming options including LabVIEW, Python C# and SPS ensures that the system can be extended via the open platform and the software concept. As a result, users can develop and manage assembly programs themselves, without having to disclose sensitive know-how to third parties.

The kinematic configuration of the manipulator comprises a parallel structure and is based completely on flexure bearings. This permits even the smallest steps to be transferred without any loss to the end effector and avoids the occurrence of undesirable effects such as reverse play or hysteresis. The actuators used are piezo stepper motors, which combine an extremely high motion resolution of only a few nanometers with relatively large travel ranges. The end result is that highest levels of precision can be achieved along with the smallest of steps in any degree of freedom.

The new platform is a Fraunhofer in-house development and has been commercially available through the spin-off company Aixemtec since 2016. Novel assembly processes are initially being developed on a prototypical level at the Fraunhofer IPT. After successful demonstration, they can be used immediately for small- and mid-sized contract assembly operations through Aixemtec.

Simultaneously, the actual system is being set up for the customer under industrial standards once economically reasonable for the customer. Ideally, the assembly process is being tuned and qualified during the setup of the machine while Aixemtec is assembling first products in contract manufacturing. Customer benefits are manifold – amongst others, a short time-to-market, contract assembly in times of peak production, as well as receiving an assembly platform with a well-established and qualified process are most valued by customers today. This cooperation allows for Fraunhofer IPTs customers’ optimal exploitation of production-technological research results.

Several companies involved in assembling optical systems profit particularly readily from the innovative systems engineering and Fraunhofer IPTs and Aixemtecs close cooperation. The assembly of collimation optics for diode lasers or VCSEL, of solid state lasers with planar assembly systems, endoscope lenses or projectors for structured light are among the first examples of applications.

Scientists from the Fraunhofer IPT will also be presenting their latest research results in the field of optics in three talks to be given at “SPIE Photonics West”.

We hope to welcome you in Room 130 at the following times:

Tuesday 31.01.2017, 11.20
Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics
Sebastian Sauer

Tuesday 31.01.2017, 17.10
Robust adhesive precision bonding of laser optics II
Tobias Müller

Thursday, 02.02.2017, 11.10
Active Alignment of DOE based structured light application in consumer electronics
Daniel Zontar


Dipl.-Ing. Tobias Müller
Fraunhofer Institute for Production Technology IPT
Steinbachstraße 17
52074 Aachen
Phone +49 241 8904-493

This press release and a printable photo are also available under

Weitere Informationen:

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>