Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open, flexible assembly platform for optical systems

24.01.2017

The assembly of laser systems demands high-precision orientation of the optical components to one another. An assembly platform incorporating a micro-manipulator, which ensures flexible automation of this task, has been developed by the Fraunhofer Institute for Production Technology IPT in Aachen. This permits optical components for high-power diode lasers, miniaturized lenses or projectors for structured light, for example to be aligned and bonded automatically. The Fraunhofer IPT will be unveiling the new system in front of an expert audience at “SPIE Photonics West” from 28 January till 2 February 2017 in San Francisco.

The new equipment, developed by the Fraunhofer IPT, operates with the highest level of precision and is suitable for a diverse range of optics assembly tasks – not only for active alignment of optical components, but also for inspecting or arranging micro-components. The alignment unit in the system has six degrees of freedom at its disposal and is used in conjunction with a portal system. This provides a working space of up to 500 x 500 mm² for optics assembly.


The flexible and easily programmable assembly platform, tailored to the needs of micro-optical assembly processes.

Source: Fraunhofer IPT


The 500x500x300mm³ working space is made for interchangeable and customized assembly tasks that enable a responsive automated production.

Source: Fraunhofer IPT

Since the system can be controlled in virtually any programming language, it can be integrated swiftly and flexibly within a range of production environments. The technical configuration of the system can be selected individually and optional extras include feed modules or transfer systems for example.

The system can also execute specified standard processes such as side tab and bottom tab assembly in order to produce large volumes fully or partially automatically. Basic functionalities such as part tracking and evaluation of the overall system effectiveness or process capability are supplied. The micro-manipulator can additionally be hand-operated for quick prototyping tasks should the effort involved in programming and setting up for automation be deemed not to be worthwhile.

The diverse range of programming options including LabVIEW, Python C# and SPS ensures that the system can be extended via the open platform and the software concept. As a result, users can develop and manage assembly programs themselves, without having to disclose sensitive know-how to third parties.

The kinematic configuration of the manipulator comprises a parallel structure and is based completely on flexure bearings. This permits even the smallest steps to be transferred without any loss to the end effector and avoids the occurrence of undesirable effects such as reverse play or hysteresis. The actuators used are piezo stepper motors, which combine an extremely high motion resolution of only a few nanometers with relatively large travel ranges. The end result is that highest levels of precision can be achieved along with the smallest of steps in any degree of freedom.

The new platform is a Fraunhofer in-house development and has been commercially available through the spin-off company Aixemtec since 2016. Novel assembly processes are initially being developed on a prototypical level at the Fraunhofer IPT. After successful demonstration, they can be used immediately for small- and mid-sized contract assembly operations through Aixemtec.

Simultaneously, the actual system is being set up for the customer under industrial standards once economically reasonable for the customer. Ideally, the assembly process is being tuned and qualified during the setup of the machine while Aixemtec is assembling first products in contract manufacturing. Customer benefits are manifold – amongst others, a short time-to-market, contract assembly in times of peak production, as well as receiving an assembly platform with a well-established and qualified process are most valued by customers today. This cooperation allows for Fraunhofer IPTs customers’ optimal exploitation of production-technological research results.

Several companies involved in assembling optical systems profit particularly readily from the innovative systems engineering and Fraunhofer IPTs and Aixemtecs close cooperation. The assembly of collimation optics for diode lasers or VCSEL, of solid state lasers with planar assembly systems, endoscope lenses or projectors for structured light are among the first examples of applications.

Scientists from the Fraunhofer IPT will also be presenting their latest research results in the field of optics in three talks to be given at “SPIE Photonics West”.

We hope to welcome you in Room 130 at the following times:

Tuesday 31.01.2017, 11.20
Individualized FAC on bottom tab subassemblies to minimize adhesive gap between emitter and optics
Sebastian Sauer

Tuesday 31.01.2017, 17.10
Robust adhesive precision bonding of laser optics II
Tobias Müller

Thursday, 02.02.2017, 11.10
Active Alignment of DOE based structured light application in consumer electronics
Daniel Zontar

Contact

Dipl.-Ing. Tobias Müller
Fraunhofer Institute for Production Technology IPT
Steinbachstraße 17
52074 Aachen
Germany
Phone +49 241 8904-493
tobias.mueller@ipt.fraunhofer.de
www.ipt.fraunhofer.de

This press release and a printable photo are also available under
www.ipt.fraunhofer.de/en/Press/Pressreleases/20170123_open-flexible-assembly-platform-for-optical-systems.html

Weitere Informationen:

http://www.ipt.fraunhofer.de/en/Press/Pressreleases/20170123_open-flexible-assem...

Susanne Krause | Fraunhofer-Institut für Produktionstechnologie IPT

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>