Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the road to ANG vehicles

28.10.2015

Berkeley Lab researchers find a better way to store natural gas as a transportation fuel

With new makes of all-electric and hybrid automobiles seeming to emerge as fast as the colors of fall, it is easy to overlook another alternative to gasoline engines that could prove to be a major player in reduced-carbon transportation - cars powered by natural gas.


The cobalt-bdp MOF features flexible square-shaped pores that expand under pressure to adsorb increasing amounts of methane gas.

Credit: Jeff Long, Berkeley Lab

Natural gas, which consists primarily of methane (CH4) is an abundant, cheaper and cleaner burning fuel than gasoline, but its low energy density at ambient temperature and pressure has posed a severe challenge for on-board fuel storage in cars. Help may be on the way.

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a variety of metal-organic frameworks (MOFs) - sponge-like 3D crystals with an extraordinarily large internal surface area - that feature flexible gas-adsorbing pores.

This flexibility gives these MOFs a high capacity for storing methane, which in turn has the potential to help make the driving range of an adsorbed-natural-gas (ANG) car comparable to that of a typical gasoline-powered car.

"Our flexible MOFs can be used to boost the usable capacity of natural gas in a tank, reduce the heating effects associated with filling an ANG tank, and reduce the cooling effects upon discharging the gas from the ANG tank," says Jeffrey Long, a chemist with Berkeley Lab's Materials Sciences Division and the University of California (UC) Berkeley who is leading this research.

"This ability to maximize the deliverable capacity of natural gas while also providing internal heat management during adsorption and desorption demonstrates a new concept in the storage of natural gas that provides a possible path forward for ANG applications where none was envisioned before."

Long is the corresponding author of a Nature paper that describes this work entitled, "Methane storage in flexible metal-organic frameworks with intrinsic thermal management." The lead author is Jarad Mason, a member of Long's research group. (See below for a complete list of co-authors.)

The United States holds a vast amount of proven natural gas reserves - some 360 trillion cubic feet and climbing. While compressed natural gas-fueled vehicles are already on the road, the widespread use of natural gas as a transportation fuel has been hampered by cumbersome and expensive on-board gas storage tanks and the cost of dispensing compressed natural gas to vehicles.

The storage issue is especially keen for light-duty vehicles such as cars, in which the space available for on-board fuel storage is limited. ANG has the potential to store high densities of methane within a porous material at ambient temperature and moderate pressures, but designing such high-capacity systems while still managing the thermal fluctuations associated with adsorbing and desorbing the gas from the adsorbent has proven to be difficult.

The key to the success of the MOFs developed by Long, Mason and their colleagues is a "stepped" adsorption and desorption of methane gas.

"Most porous materials that would be used as adsorbents exhibit classical Langmuir-type isotherm adsorption, where the amount of methane adsorbed increases continuously but with a decreasing slope as the pressure is raised so that, upon discharging the methane down to the minimum delivery pressure, much of it remains in the tank," Long says. "With our flexible MOFs, the adsorption process is stepped because the gas must force its way into the MOF crystal structure, opening and expanding the pores. This means the amount of methane that can be delivered to the engine, i.e., the usable capacity, is higher than for traditional, non-flexible adsorbents."

In addition, Long says, the step in the adsorption isotherm is associated with a structural phase change in the MOF crystal that reduces the amount of heat released upon filling the tank, as well as the amount of cooling that takes place when methane is delivered to accelerate the vehicle.

"Crystallites that experience higher external pressures will have a greater free energy change associated with the phase transition and will open at higher pressures," Long says. "Our results present the prospect of using mechanical pressure, provided, for example, through an elastic bladder, as a means of thermal management in an ANG system based on a flexible adsorbent."

To test their approach, Long and his colleagues used a cobalt-based MOF hybrid that goes by the name "cobalt-bdp" or Co(bdp) for cobalt (benzenedipyrazolate). In its most open form, cobalt-bdp features square-shaped pores that can flex shut like an accordion when the pores are evacuated.

Combined gas adsorption and in situ powder X-ray diffraction experiments performed under various pressures of methane at 25°C (77°F)showed that there is minimal adsorption of methane by the cobalt-bpd MOF at low pressures, then a sharp step upwards at 16 bar, signifying a transition from a collapsed, non-porous structure to an expanded, porous structure. This transition to an expanded phase was reversible. When the methane pressure decreased to between 10 bar and 5 bar, the framework fully converted back to the collapsed phase, pushing out all of the adsorbed methane gas.

Long says that it should be possible to design MOF adsorbents of methane with even stronger gas binding sites and higher-energy phase transitions for next generation ANG vehicles. He and his group are working on this now and are also investigating whether the strategy can be applied to hydrogen, which poses similar storage problems.

Moreover, Long says, "Improved compaction and packing strategies should also allow further reductions to external thermal-management requirements and optimization of the overall natural gas storage-system performance."

###

In addition to Long and Mason, other authors of the Nature paper that describes this study were Julia Oktawiec, Mercedes Taylor, Matthew Hudson, Julien Rodriguez, Jonathan Bachman, Miguel Gonzalez, Antonio Cervellino, Antonietta Guagliardi, Craig Brown, Philip Llewellyn and Norberto Masciocchi.

This research was supported by the DOE's Advanced Research Projects Agency - Energy (ARPA-E). The X-ray characterizations were carried out at synchrotron light sources that included the Advanced Light Source and the Advanced Photon Source, both DOE Office of Science User Facilities.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/

Lynn Yarris | EurekAlert!

Further reports about: methane gas natural gas pressure thermal management vehicles

More articles from Power and Electrical Engineering:

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Real-time layer thickness measurement with terahertz
17.04.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>