Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the crest of the wave: Electronics on a time scale shorter than a cycle of light

30.07.2015

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and engineers all over the world have racked their brains about one central question:


An intense lightwave drives ultrafast electronic motion in a bulk crystal. A novel quantum interference creates free electrons and causes the emission of ultrashort high-harmonic light bursts.

Image: B. Baxley (parttowhole.com)

Is there a fundamental limit for the speed of electronics? Indeed, all electronic circuits rely on charge motion controlled by electric fields. Future high-speed electronics would, therefore, benefit immensely from bias fields that switch faster than state-of-the-art electronic clocks. The solution to this challenge may be surprisingly straightforward: One could try to employ the fastest alternating electric field available in nature – a light wave.

The team of researchers from Germany has now directly observed the electrons’ motion in a semiconductor driven by a strong light pulse in the terahertz spectral region. The pioneering experiment carried out in Rupert Huber’s group at the University of Regensburg enabled the first simultaneous clocking measurement of extremely broadband radiation sent out by the accelerated electrons, so-called high-order harmonics, and the driving light wave.

It turns out that the harmonics are emitted in ultrashort light bursts which have now been characterized with a temporal resolution of approximately one femtosecond – the millionth of a billionth part of a second. In combination with numerical simulations performed in the groups of Mackillo Kira and Stephan W. Koch at the University of Marburg, this study provides unprecedented insights into the quantum world of a solid.

The results shed light onto a surprising behavior of the crystal electrons: During an extremely short timespan after excitation, the strong light field drives an electron simultaneously along multiple paths instead of one only. This strange scenario is possible in the quantum world where particles can behave like waves.

As an indisputable quantum wave aspect, the electrons were shown to interfere constructively (destructively) only at the positive (negative) crests of the driving field, massively reshaping the temporal emission of the harmonics. While such quantum effects are often fragile and usually become observable only in extremely gentle fields the newly discovered phenomenon is qualitatively different because it is robust, producing pronounced interference contrast especially for extremely strong driving fields.

The breakthrough reveals the temporal structure of high-harmonics from a solid for the first time and thus helps the development of new sources of ever shorter light pulses. Moreover, this discovery opens new perspectives for modern high-speed electronics and sets an important milestone on the way towards light-wave-driven electronics.

Original publication:
M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M.Kira und R. Huber, Real-time observation of interfering crystal electrons in high-harmonic generation, Nature (2015), DOI: 10.1038/nature14652
Publication: http://dx.doi.org/10.1038/nature14652

Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Germany
E-Mail: rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Renthof 5
35032 Marburg
Germany
E-Mail: mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>