Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the crest of the wave: Electronics on a time scale shorter than a cycle of light

30.07.2015

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and engineers all over the world have racked their brains about one central question:


An intense lightwave drives ultrafast electronic motion in a bulk crystal. A novel quantum interference creates free electrons and causes the emission of ultrashort high-harmonic light bursts.

Image: B. Baxley (parttowhole.com)

Is there a fundamental limit for the speed of electronics? Indeed, all electronic circuits rely on charge motion controlled by electric fields. Future high-speed electronics would, therefore, benefit immensely from bias fields that switch faster than state-of-the-art electronic clocks. The solution to this challenge may be surprisingly straightforward: One could try to employ the fastest alternating electric field available in nature – a light wave.

The team of researchers from Germany has now directly observed the electrons’ motion in a semiconductor driven by a strong light pulse in the terahertz spectral region. The pioneering experiment carried out in Rupert Huber’s group at the University of Regensburg enabled the first simultaneous clocking measurement of extremely broadband radiation sent out by the accelerated electrons, so-called high-order harmonics, and the driving light wave.

It turns out that the harmonics are emitted in ultrashort light bursts which have now been characterized with a temporal resolution of approximately one femtosecond – the millionth of a billionth part of a second. In combination with numerical simulations performed in the groups of Mackillo Kira and Stephan W. Koch at the University of Marburg, this study provides unprecedented insights into the quantum world of a solid.

The results shed light onto a surprising behavior of the crystal electrons: During an extremely short timespan after excitation, the strong light field drives an electron simultaneously along multiple paths instead of one only. This strange scenario is possible in the quantum world where particles can behave like waves.

As an indisputable quantum wave aspect, the electrons were shown to interfere constructively (destructively) only at the positive (negative) crests of the driving field, massively reshaping the temporal emission of the harmonics. While such quantum effects are often fragile and usually become observable only in extremely gentle fields the newly discovered phenomenon is qualitatively different because it is robust, producing pronounced interference contrast especially for extremely strong driving fields.

The breakthrough reveals the temporal structure of high-harmonics from a solid for the first time and thus helps the development of new sources of ever shorter light pulses. Moreover, this discovery opens new perspectives for modern high-speed electronics and sets an important milestone on the way towards light-wave-driven electronics.

Original publication:
M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W. Koch, M.Kira und R. Huber, Real-time observation of interfering crystal electrons in high-harmonic generation, Nature (2015), DOI: 10.1038/nature14652
Publication: http://dx.doi.org/10.1038/nature14652

Contact:
Prof. Dr. Rupert Huber
Universität Regensburg
Universitätsstraße 31
93053 Regensburg
Germany
E-Mail: rupert.huber@physik.uni-regensburg.de

Prof. Dr. Mackillo Kira
Philipps-Universität Marburg
Renthof 5
35032 Marburg
Germany
E-Mail: mackillo.kira@physik.uni-marburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>