Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OLED microdisplays in data glasses for improved human-machine interaction

22.09.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for patients, athletes, and in manufacturing. With the help of the so-called bi-directional OLED microdisplays, which are developed by Fraunhofer FEP, the function of “wearable displays” and hands-free eye controlled systems are joined together in a unique way.


Interactive smart eye-glasses using bi-directional OLED microdisplays

Jürgen Lösel


Bi-directional OLED microdisplay with embedded image sensor function

Jürgen Lösel

“Eye-controlled augmented-reality smart glasses using our OLED microdisplays can be designed to be relatively small and light-weight since the display and image sensor are integrated on a single chip. A new and improved development platform is now available to our clients for creating proprietary products”, explains Judith Baumgarten, Project Manager at Fraunhofer FEP.

The current generation of color bi-directional microdisplays offers SVGA resolution (800 × 600 × RGBW) and for the first time sufficient image quality to become established in this market segment. The updated hardware design with standard HDMI and USB interfaces likewise contribute to getting established.

The eyeglasses exhibited at AWE Europe 2016 originated within the FAIR Project completed this year, was funded by the German Federal Ministry of Education and Research (BMBF). The project objective was to develop smart glasses for human-machine interaction, with control based on visual information captured and derived from eye movements.

The bi-directional full color OLED microdisplays integrated into see-trough data eye-glasses under this joint project were designed by project partner Trivisio, who developed a specialized mechanical design to fit the head in order to achieve good comfort and wearability. The electronics were integrated completely into the glasses so that they can be connected to a PC without an intermediate controller.

Where can these types of smart glasses become beneficially employed?

Various use-cases were examined and suitable application software for guide-by-eye control were developed by project partners Interactive Minds and Mecotec. One application developed is a communications and entertainment platform for ALS patients. It converts pre-composed text segments as well as those created by the patients themselves into audible speech signals, as well as enabling photographs to be selected and displayed, and videos and music to be watched and listened to.

Another application was developed for industry. In this case the glasses were used for calibration of pressure regulators in production facilities. Technical University Dresden monitored the project both with respect to the ALS patients (through the university’s Klinik und Poliklinik für Neurologie (hospital and ambulatory neurology)), as well as carrying out studies on ergonometry and user-friendly design (via the Chair for Industrial Psychology and Applied Cognition Research).

Besides these application examples, the advanced bi-directional OLED microdisplays of Fraunhofer FEP open up a whole world of possibilities and opportunities. The displays can be acquired in various evaluation kits for industry partners to test out their own ideas. This facilitates the integration of the displays in client-specific applications, and our scientists look forward to new research and development projects.
The SID-ME 2017 conference in Dresden next year (March 13th – 14th) is dedicated to the world of “wearable displays” and everything that goes with them. Experts will meet here to discuss technologies and applications.

The initial information on the program and first call for papers can be found at: www.fep.fraunhofer.de/sidme17.

The project partners would like to thank the German Federal Ministry of Education and Research (BMBF) for funding the FAIR research project (funding reference 16SV5842).

PRESS CONTACT

M.Sc. Annett Arnold | Head of Corporate Communications | Fraunhofer FEP | Winterbergstr. 28 | 01277 Dresden, Germany | Phone +49 351 2586-452 | Fax +49 351 2586-55452 | Email Annett.Arnold@fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/463

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>