Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OLED microdisplays in data glasses for improved human-machine interaction


The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for patients, athletes, and in manufacturing. With the help of the so-called bi-directional OLED microdisplays, which are developed by Fraunhofer FEP, the function of “wearable displays” and hands-free eye controlled systems are joined together in a unique way.

Interactive smart eye-glasses using bi-directional OLED microdisplays

Jürgen Lösel

Bi-directional OLED microdisplay with embedded image sensor function

Jürgen Lösel

“Eye-controlled augmented-reality smart glasses using our OLED microdisplays can be designed to be relatively small and light-weight since the display and image sensor are integrated on a single chip. A new and improved development platform is now available to our clients for creating proprietary products”, explains Judith Baumgarten, Project Manager at Fraunhofer FEP.

The current generation of color bi-directional microdisplays offers SVGA resolution (800 × 600 × RGBW) and for the first time sufficient image quality to become established in this market segment. The updated hardware design with standard HDMI and USB interfaces likewise contribute to getting established.

The eyeglasses exhibited at AWE Europe 2016 originated within the FAIR Project completed this year, was funded by the German Federal Ministry of Education and Research (BMBF). The project objective was to develop smart glasses for human-machine interaction, with control based on visual information captured and derived from eye movements.

The bi-directional full color OLED microdisplays integrated into see-trough data eye-glasses under this joint project were designed by project partner Trivisio, who developed a specialized mechanical design to fit the head in order to achieve good comfort and wearability. The electronics were integrated completely into the glasses so that they can be connected to a PC without an intermediate controller.

Where can these types of smart glasses become beneficially employed?

Various use-cases were examined and suitable application software for guide-by-eye control were developed by project partners Interactive Minds and Mecotec. One application developed is a communications and entertainment platform for ALS patients. It converts pre-composed text segments as well as those created by the patients themselves into audible speech signals, as well as enabling photographs to be selected and displayed, and videos and music to be watched and listened to.

Another application was developed for industry. In this case the glasses were used for calibration of pressure regulators in production facilities. Technical University Dresden monitored the project both with respect to the ALS patients (through the university’s Klinik und Poliklinik für Neurologie (hospital and ambulatory neurology)), as well as carrying out studies on ergonometry and user-friendly design (via the Chair for Industrial Psychology and Applied Cognition Research).

Besides these application examples, the advanced bi-directional OLED microdisplays of Fraunhofer FEP open up a whole world of possibilities and opportunities. The displays can be acquired in various evaluation kits for industry partners to test out their own ideas. This facilitates the integration of the displays in client-specific applications, and our scientists look forward to new research and development projects.
The SID-ME 2017 conference in Dresden next year (March 13th – 14th) is dedicated to the world of “wearable displays” and everything that goes with them. Experts will meet here to discuss technologies and applications.

The initial information on the program and first call for papers can be found at:

The project partners would like to thank the German Federal Ministry of Education and Research (BMBF) for funding the FAIR research project (funding reference 16SV5842).


M.Sc. Annett Arnold | Head of Corporate Communications | Fraunhofer FEP | Winterbergstr. 28 | 01277 Dresden, Germany | Phone +49 351 2586-452 | Fax +49 351 2586-55452 | Email

Weitere Informationen:

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>