Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-damaging and efficient: plasma steriliser for medical and aerospace applications

02.02.2015

Traditional sterilisation methods are no longer effective against all pathogens. By means of plasma, on the other hand, exceptionally stubborn bacteria stems can be killed off, as demonstrated by Junior Professor Dr Katharina Stapelmann from the Institute for Electrical Engineering and Plasma Technology. She has developed a steriliser that is specifically suited for ridding medical instruments of germs efficiently, yet without damaging the material. As reported in the RUB’s science magazine “RUBIN”, the process is also interesting for the aerospace industry.

Perfect fit for medical applications


Plasma – the state of matter with the highest energy level – is familiar to many in nature in the form of fire. Using cold plasmas, many items can be efficiently sterilised.

RUBIN, photo: Gorczany

Stapelmann designed the sterilisation chamber as a drawer with a surface in DIN-A4 format to hold standard tablets for medical instruments. The drawer may also be used as a sterile container. “You can, for example, put a set that’s going to be used in an appendectomy into the device, sterilise it and store the closed container in the cupboard right until surgery,” explains the researcher.

Compared with traditional processes, plasma sterilisation is more energy saving, faster and does not require any harmful radiation or carcinogenic chemicals. Unlike autoclaves, which apply moist heat, the process can be deployed for synthetic components, and it does not damage metal items which an autoclave blunts within a short space of time. A prototype of the steriliser is already available. What is now missing is an industrial partner who will make the product market-ready.

Germ-free in space

In order to prevent germs from the Earth from getting into space, and germs from space from getting to Earth, it is standard practice to sterilise all aerospace materials. However, not all pathogens are destroyed by this multi-stage process.

In collaboration with the German Aerospace Center, Katharina Stapelmann tested her method for metal screws which were riddled with the spores of the particularly stubborn bacterium Bacillus pumilis SAFR032.

This bacteria stem has demonstrated the to-date highest resistance against traditional sterilisation methods, such as autoclaves, chemical treatment or UV radiation. The plasma treatment, however, destroyed all germs within the space of only five minutes at a temperature of 60 degrees centigrade.

Detailed article in the science magazine RUBIN

A detailed article with pictures can be found in the online magazine RUBIN, the RUB’s science magazine: http://rubin.rub.de/en/germ-free-space. Text and images in the download page are free for use for editorial purposes, provided the relevant copyright notice is included. You would like to receive a notification when new RUBIN articles are published? Then subscribe to our news feed at http://rubin.rub.de/feed/rubin-en.rss.

About Katharina Stapelmann

Katharina Stapelmann was appointed Junior Professor at the Faculty of Electrical Engineering and Information Technology on February 1, 2015, and she heads the group “Plasma Technology in Biomedical Applications”. In December 2013, she obtained her doctorate summa cum laude with the thesis “Plasma technical and microbiological characterization of newly developed VHF plasmas”. Following her graduation in Electrical Engineering and Information Technology, she worked since 2009 as researcher at the Institute for Electrical Engineering and Plasma Technology, headed by Prof Dr-Ing. Peter Awakowicz, at RUB.

Further information

Junior Professor Dr-Ing. Katharina Stapelmann, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/234/32-29445, email: stapelmann@aept.rub.de

One click away

More plasma research in RUBIN
http://rubin.rub.de/en/making-synthetic-materials-more-impervious

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>