Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-damaging and efficient: plasma steriliser for medical and aerospace applications

02.02.2015

Traditional sterilisation methods are no longer effective against all pathogens. By means of plasma, on the other hand, exceptionally stubborn bacteria stems can be killed off, as demonstrated by Junior Professor Dr Katharina Stapelmann from the Institute for Electrical Engineering and Plasma Technology. She has developed a steriliser that is specifically suited for ridding medical instruments of germs efficiently, yet without damaging the material. As reported in the RUB’s science magazine “RUBIN”, the process is also interesting for the aerospace industry.

Perfect fit for medical applications


Plasma – the state of matter with the highest energy level – is familiar to many in nature in the form of fire. Using cold plasmas, many items can be efficiently sterilised.

RUBIN, photo: Gorczany

Stapelmann designed the sterilisation chamber as a drawer with a surface in DIN-A4 format to hold standard tablets for medical instruments. The drawer may also be used as a sterile container. “You can, for example, put a set that’s going to be used in an appendectomy into the device, sterilise it and store the closed container in the cupboard right until surgery,” explains the researcher.

Compared with traditional processes, plasma sterilisation is more energy saving, faster and does not require any harmful radiation or carcinogenic chemicals. Unlike autoclaves, which apply moist heat, the process can be deployed for synthetic components, and it does not damage metal items which an autoclave blunts within a short space of time. A prototype of the steriliser is already available. What is now missing is an industrial partner who will make the product market-ready.

Germ-free in space

In order to prevent germs from the Earth from getting into space, and germs from space from getting to Earth, it is standard practice to sterilise all aerospace materials. However, not all pathogens are destroyed by this multi-stage process.

In collaboration with the German Aerospace Center, Katharina Stapelmann tested her method for metal screws which were riddled with the spores of the particularly stubborn bacterium Bacillus pumilis SAFR032.

This bacteria stem has demonstrated the to-date highest resistance against traditional sterilisation methods, such as autoclaves, chemical treatment or UV radiation. The plasma treatment, however, destroyed all germs within the space of only five minutes at a temperature of 60 degrees centigrade.

Detailed article in the science magazine RUBIN

A detailed article with pictures can be found in the online magazine RUBIN, the RUB’s science magazine: http://rubin.rub.de/en/germ-free-space. Text and images in the download page are free for use for editorial purposes, provided the relevant copyright notice is included. You would like to receive a notification when new RUBIN articles are published? Then subscribe to our news feed at http://rubin.rub.de/feed/rubin-en.rss.

About Katharina Stapelmann

Katharina Stapelmann was appointed Junior Professor at the Faculty of Electrical Engineering and Information Technology on February 1, 2015, and she heads the group “Plasma Technology in Biomedical Applications”. In December 2013, she obtained her doctorate summa cum laude with the thesis “Plasma technical and microbiological characterization of newly developed VHF plasmas”. Following her graduation in Electrical Engineering and Information Technology, she worked since 2009 as researcher at the Institute for Electrical Engineering and Plasma Technology, headed by Prof Dr-Ing. Peter Awakowicz, at RUB.

Further information

Junior Professor Dr-Ing. Katharina Stapelmann, Institute for Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Technology at the Ruhr-Universität, 44780 Bochum, Germany, phone: +49/234/32-29445, email: stapelmann@aept.rub.de

One click away

More plasma research in RUBIN
http://rubin.rub.de/en/making-synthetic-materials-more-impervious

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>