Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New techniques and opportunities for 3D component coating

05.09.2016

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, one of the leading research and development partners for development of surface technologies, is introducing its new 3D electron beam deposition equipment named NOVELLA following its successful commissioning. NOVELLA offers new avenues and opportunities for efficient high-rate electron beam deposition of 3D components.

Coatings play a considerable role in increasing the functionality of components. High-performance applied layers protect components from premature mechanical wear and tear, chemical and thermal degradation or minimize frictional losses in dynamic systems. Under operating conditions coated 3D parts are exposed to extreme stress since the effects are maximized at higher temperatures and pressures, or components must bear the same loads at reduced weight. Component and coating must therefore be matched to each other in order to withstand these load conditions, which increasingly demands systems of layers with complex composition.


Coating of 3D components

© Fraunhofer FEP


NOVELLA – facility for coating 3D components

© Fraunhofer FEP, Photographer: Jürgen Lösel

With the aim of developing resource-conserving and efficiency-raising technologies in machinery and plant engineering, industry also faces the challenge of cost efficiency in coating of components with three-dimensional geometry for functional optimization.

NOVELLA, an experimental platform jointly developed by Fraunhofer FEP and CREAVAC GmbH, offers efficient high-rate electron beam deposition of 3D components. The facility permits pre-treatment, plasma-activated evaporation as well as hybrid processes in which electron beam technology can be combined with magnetron sputtering and plasma-activated chemical vapor deposition.

Dr. Jens-Peter Heinß, head of the Component Coating Group at Fraunhofer FEP, explains: “The design of the installation offers our research partners and industrial clients currently unique capabilities for feasibility studies and material development. The high coating rates that we achieve enable the processes to be planned and executed more productively and in the end more economically.”

Dr. Heinß will be presenting the innovative design of the unit at the 15th International Conference on Plasma Surface Engineering in Garmisch-Partenkirchen, Germany from September 12-16, 2016.

Fraunhofer FEP will be conducting a dedicated workshop on the new installation entitled “Vision Components" on October 11, 2016. The NOVELLA facility and its vacuum coating capabilities will be presented to an audience of technical experts from various branches of industry and science there. Current trends in vacuum coating engineering, such as wear protection and tribologic applications, will be discussed and new approaches to solutions will be presented.

Important results for developing the design of NOVELLA experimental platform were incorporated from the collaborative project "3DEB” funded by the European Union and the Free State of Saxony (grant agreement no 100 146 071).

Press contact:

Annett Arnold
Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/73n

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>