Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High-Voltage Silicon Carbide Inverter Enables Stabilization of Medium-Voltage Grids

30.05.2018

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE developed and successfully put into operation an inverter for direct feed-in to the 10 kV medium-voltage grid. The inverter contains high-voltage silicon carbide (SiC) transistors which allow for coupling to the medium voltage grid without requiring an additional transformer. The three-phase inverter can be used to regulate reactive power as well as to actively filter undesirable harmonics in the electricity grid. Thus, it actively contributes to the stabilization of future power grids with a large share of renewables.

According to the current state of technology, power electronics are coupled to the electricity grid mainly in the low voltage range. For grid stabilization, power converters, so-called STATCOMs (Static Synchronous Compensators), are used to supply continuous inductive or capacitive reactive power.


The 100 kVA inverter with 15 kV silicon carbide transistors shown here was developed at Fraunhofer ISE for feed-in to the 10 kV medium-voltage grid.

© Fraunhofer ISE


Single-phase 20 kV power stack with 15 kV silicon carbide power MOSFETs, drivers and part of the DC link capacitors.

© Fraunhofer ISE

The coupling to the medium voltage grid is affected by means of a 50 Hz transformer. The newly developed inverter from Fraunhofer ISE can now feed directly into the medium voltage grid without a transformer, due to the use of high voltage transistors made of silicon carbide (SiC). First component prototypes with a blocking voltage of 15 kV were used for this purpose.

Simpler System Concept and Higher Dynamics

For comparison, silicon transistors commercially available today have blocking voltages of up to only 6.5 kV. In this case, multilevel topologies with a high degree of complexity are required for feed-in to a 10 kV or 20 kV medium voltage grid. In addition silicon transistors have very high power losses.

On the other hand, silicon carbide (SiC) semiconductors have a higher blocking voltage, which reduces the number of components required for a converter. This increases not only the efficiency but also the compactness of the device.

Silicon carbide transistors also have very low switching energies, which allows for higher frequencies. As a result, the dimensions of the passive components can be reduced leading to increased savings. In addition, a transformerless compact inverter offers the possibility to upgrade the existing medium- voltage grid in urban locations.

A further advantage of this technology is the better control dynamics of the inverter. Due to the higher frequency, the inverter can act as an active filter to compensate for harmonics in the medium-voltage grid. With STATCOMS this is only possible to limited extent because of the low-pass effect of the 50 Hz transformer.

»The use of high-blocking SiC transistors, however, also presents us with new challenges,« says the project head Dirk Kranzer. »The transistors switch very fast. The extremely steep rate of voltage rise during switching can cause faults or also lead to partial or creeping discharges in the insulation. In developing the circuitry, large efforts must be made to minimize these undesirable effects. Before commercial implementation is possible, further technological developments are necessary, for example, in the power modules or in the inductive and capacitive components.«

The demonstrator for feed-in to the 10 kV grid has a power of 100 kVA. The frequency is 16 kHz, which is approximately ten times higher than in medium-voltage converters based on silicon semiconductors. Advanced high-voltage (15 kV / 10 A) silicon carbide power MOSFETs were used for the transistors. The inductive components were developed by the company and project partner »STS« (Spezial-Transformatoren-Stockach GmbH).

Future Power Electronics for Energy Technology

Besides stabilizing the medium-voltage grid, many more possible applications for high-voltage silicon carbide components exist. »For power electronics, we see a large potential for future applications in the medium-voltage range, « says Prof. Dr. Bruno Burger, group head of »New Components and Technologies« at Fraunhofer ISE. »In the future, totally new system architectures for renewable power plants, for example, large photovoltaic plants or wind farms in the megawatt range, are conceivable. The new technology also shows promise for applications in the railroad industry or large battery storage banks.«

In any case, the Department of Power Electronics and Grid Technologies at Fraunhofer ISE is well equipped to address future areas of application for power electronics in the medium-voltage grid, especially with respect to the energy transformation. At Fraunhofer ISE in Freiburg, a new medium-voltage laboratory in the multi-megawatt range is currently being set up.

The new inverter was developed in the project »HV-SiC« within the funding initiative »Future Electricity Grids« under the financial sponsorship of the German Federal Ministry of Education and Research (BMBF).

Fraunhofer ISE is presenting their newest developments in the area of power electronics at the PCIM Europe Conference in Nuremberg, Germany from June 5-7, 2018.

Weitere Informationen:

https://www.ise.fraunhofer.de/en

Karin Schneider | Fraunhofer-Institut für Solare Energiesysteme ISE

More articles from Power and Electrical Engineering:

nachricht EcoSwing Superconducting Generator Proves Itself on the Test Bench
29.05.2018 | Fraunhofer-Institut für Windenergiesysteme IWES

nachricht Failures in power grids: Dynamically induced cascades
25.05.2018 | Technische Universität Dresden

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

Creating an automated high-throughput flow cytometry system

30.05.2018 | Health and Medicine

XENON1T Experimental data establishes most stringent limit on dark matter

30.05.2018 | Physics and Astronomy

Fraunhofer at the Compounding World Expo 2018: Plastic Recycling and Intelligent Monitoring of Industrial Processes 4.0

30.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>