Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CubeSat propulsion system uses water as propellant

08.08.2017

A new type of micropropulsion system for miniature satellites called CubeSats uses an innovative design of tiny nozzles that release precise bursts of water vapor to maneuver the spacecraft.

Low-cost "microsatellites" and "nanosatellites" far smaller than conventional spacecraft, have become increasingly prevalent. Thousands of the miniature satellites might be launched to perform a variety of tasks, from high-resolution imaging and internet services, to disaster response, environmental monitoring and military surveillance.


Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats.

Credit: Purdue University photo/Erin Easterling

"They offer an opportunity for new missions, such as constellation flying and exploration that their larger counterparts cannot economically achieve," said Alina Alexeenko, a professor in Purdue University's School of Aeronautics and Astronautics.

However, to achieve their full potential, CubeSats will require micropropulsion devices to deliver precise low-thrust "impulse bits" for scientific, commercial and military space applications.

... more about:
»CubeSat »MEMS »capillaries »nozzles »vacuum »water vapor

She has led research to develop a new micropropulsion system that uses ultra-purified water.

"Water is thought to be abundant on the Martian moon Phobos," she said. "making it potentially a huge gas station in space. Water is also a very clean propellant, reducing risk of contamination of sensitive instruments by the backflow from thruster plumes."

Research findings about the new system are detailed in a paper being presented during the 31st AIAA/USU Conference on Small Satellites, Aug. 5-10 in Logan, Utah. A YouTube video about the work is available at https://youtu.be/zP72l08yD3Q.

The new system, called a Film-Evaporation MEMS Tunable Array, or FEMTA thruster, uses capillaries small enough to harness the microscopic properties of water. Because the capillaries are only about 10 micrometers in diameter, the surface tension of the fluid keeps it from flowing out, even in the vacuum of space. Activating small heaters located near the ends of the capillaries creates water vapor and provides thrust. In this way, the capillaries become valves that can be turned on and off by activating the heaters. The technology is similar to an inkjet printer, which uses heaters to push out droplets of ink.

The research paper was authored by graduate student Katherine Fowee; undergraduate students Steven Pugia, Ryan Clay, Matthew Fuehne and Margaret Linker; postdoctoral research associate Anthony Cofer; and Alexeenko

"It's very unusual for undergraduate students to have such a prominent role in advanced research like this," Alexeenko said.

The students performed the research as part of a propulsion design course.

CubeSats are made up of several units, each measuring 10-centimeters cubed. In the Purdue research, four FEMTA thrusters loaded with about a teaspoon of water were integrated into a one-unit CubeSat prototype and tested in a vacuum. The prototype, which weighs 2.8 kilograms, or about six pounds, contained electronics and an inertial measurement unit sensor to monitor the performance of the thruster system, which rotates the satellite using short-lived bursts of water vapor.

Typical satellites are about the size of a school bus, weigh thousands of pounds and sometimes cost hundreds of millions of dollars. And while conventional satellites require specialized electronics that can withstand the harsh conditions of space, CubeSats can be built with low-cost, off-the-shelf components. Constellations of many inexpensive, disposable satellites might be launched, minimizing the impact of losing individual satellites.

However, improvements are needed in micropropulsion systems to mobilize and precisely control the satellites.

"There have been substantial improvements made in micropropulsion technologies, but further reductions in mass, volume, and power are necessary for integration with small spacecraft," Alexeenko said.

The FEMTA technology is a micro-electromechanical system, or a MEMS, which are tiny machines that contain components measured on the scale of microns, or millionths of a meter. The thruster demonstrated a thrust-to-power ratio of 230 micronewtons per watt for impulses lasting 80 seconds.

"This is a very low power," Alexeenko said. "We demonstrate that one 180-degree rotation can be performed in less than a minute and requires less than a quarter watt, showing that FEMTA is a viable method for attitude control of CubeSats."

The FEMTA thrusters are microscale nozzles manufactured on silicon wafers using nanofabrication techniques common in industry. The model was tested in Purdue's High Vacuum Facility's large vacuum chamber.

Although the researchers used four thrusters, which allow the satellite to rotate on a single axis, a fully functional satellite would require 12 thrusters for 3-axis rotation.

The team built the system with inexpensive, commercially available devices that are integral for the "internet of things," an emerging phenomenon in which many everyday objects such as appliances and cars have their own internet addresses.

"These undergraduate students integrated all the IOT technologies, which, frankly, they know more about than I do," she said.

The inertial measurement unit handles 10 different types of measurements needed to maneuver and control the satellite. An onboard computer wirelessly receives signals to fire the thruster and transmits motion data using this IMU chip.

"What we really want to do next is integrate our system into a satellite for an actual space mission," she said.

The research involved a collaboration with NASA's Goddard Space Flight Center through the space agency's SmallSat Technology Partnership program, which provided critical funding since the concept inception in 2013.

A patent application for the concept has been filed through the Purdue Research Foundation's Office of Technology Commercialization. The nozzles for the system were fabricated in the Scifres

Nanofabrication Laboratory in the Birck Nanotechnology Center in Purdue's Discovery Park.

###

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Alina Alexeenko, 765-496-1864, alexeenk@purdue.edu

IMAGE CAPTION:

Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats. (Purdue University photo/Erin Easterling)

A publication-quality photo is available at https://news.uns.purdue.edu/images/2017/alexeenko-cubesat.JPG

IMAGE CAPTION:

This tiny engine is part of the new micropropulsion system. (Purdue University photo/Erin Easterling) A publication-quality photo is available at https://news.uns.purdue.edu/images/2017/cubesat-engine.jpg

ABSTRACT

Quad-Thruster FEMTA Micropropulsion System for CubeSat 1-Axis Control

Katherine Fowee, Steven Pugia, Ryan Clay, Matthew Fuehne, Margaret Linker, Anthony Cofer, Alina Alexeenko Purdue University School of Aeronautics & Astronautics, 701 W. Stadium Avenue West Lafayette, IN 47907; (765) 496-1864, kfowee@purdue.edu

The need for compact, low-power micropropulsion systems to increase the maneuverability and lifespan of CubeSats has increased significantly as nanosat missions have become more ubiquitous and complex. The Film- Evaporation MEMS Tunable Array (FEMTA) thruster is a novel micropropulsion technology that exploits thermally controlled microcapillaries to generate micronewton thrust using liquid water as propellant. Here we present the design and testing of four FEMTA thrusters integrated into a 1U CubeSat prototype with the necessary electronics and an inertial measurement unit sensor to monitor the 1U-quad-thruster FEMTA CubeSat Model's attitude. The model was tested in the Purdue University High Vacuum Facility's large vacuum chamber for single-axis control using the FEMTA propulsion system. The experimental data on CubeSat rotation at a slew rate of about 5 deg/sec activated by FEMTA systems with <1 Watt input power show that FEMTA is a viable method for attitude control of CubeSats.

Media Contact

Emil Venere
venere@purdue.edu
765-494-4709

 @PurdueUnivNews

http://www.purdue.edu/ 

Emil Venere | EurekAlert!

Further reports about: CubeSat MEMS capillaries nozzles vacuum water vapor

More articles from Power and Electrical Engineering:

nachricht Developing more flexible turbomachines
10.08.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Solar glasses generate solar power
03.08.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

Im Focus: Researchers discover Achilles' heel of bacteria

HZI researchers identify a protein in Salmonella that contributes to the assembly of the motility apparatus – a possible target for novel medications

Salmonellae are particularly resistant to antibiotics since they possess not only one, but two membranes that protect them from harmful substances. This makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

 
Latest News

Microbe may explain evolutionary origins of DNA folding

11.08.2017 | Life Sciences

Day to night and back again: Earth's ionosphere during the total solar eclipse

11.08.2017 | Physics and Astronomy

New handheld spectral analyzer uses power of smartphone to detect disease

11.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>