Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New CubeSat propulsion system uses water as propellant

08.08.2017

A new type of micropropulsion system for miniature satellites called CubeSats uses an innovative design of tiny nozzles that release precise bursts of water vapor to maneuver the spacecraft.

Low-cost "microsatellites" and "nanosatellites" far smaller than conventional spacecraft, have become increasingly prevalent. Thousands of the miniature satellites might be launched to perform a variety of tasks, from high-resolution imaging and internet services, to disaster response, environmental monitoring and military surveillance.


Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats.

Credit: Purdue University photo/Erin Easterling

"They offer an opportunity for new missions, such as constellation flying and exploration that their larger counterparts cannot economically achieve," said Alina Alexeenko, a professor in Purdue University's School of Aeronautics and Astronautics.

However, to achieve their full potential, CubeSats will require micropropulsion devices to deliver precise low-thrust "impulse bits" for scientific, commercial and military space applications.

... more about:
»CubeSat »MEMS »capillaries »nozzles »vacuum »water vapor

She has led research to develop a new micropropulsion system that uses ultra-purified water.

"Water is thought to be abundant on the Martian moon Phobos," she said. "making it potentially a huge gas station in space. Water is also a very clean propellant, reducing risk of contamination of sensitive instruments by the backflow from thruster plumes."

Research findings about the new system are detailed in a paper being presented during the 31st AIAA/USU Conference on Small Satellites, Aug. 5-10 in Logan, Utah. A YouTube video about the work is available at https://youtu.be/zP72l08yD3Q.

The new system, called a Film-Evaporation MEMS Tunable Array, or FEMTA thruster, uses capillaries small enough to harness the microscopic properties of water. Because the capillaries are only about 10 micrometers in diameter, the surface tension of the fluid keeps it from flowing out, even in the vacuum of space. Activating small heaters located near the ends of the capillaries creates water vapor and provides thrust. In this way, the capillaries become valves that can be turned on and off by activating the heaters. The technology is similar to an inkjet printer, which uses heaters to push out droplets of ink.

The research paper was authored by graduate student Katherine Fowee; undergraduate students Steven Pugia, Ryan Clay, Matthew Fuehne and Margaret Linker; postdoctoral research associate Anthony Cofer; and Alexeenko

"It's very unusual for undergraduate students to have such a prominent role in advanced research like this," Alexeenko said.

The students performed the research as part of a propulsion design course.

CubeSats are made up of several units, each measuring 10-centimeters cubed. In the Purdue research, four FEMTA thrusters loaded with about a teaspoon of water were integrated into a one-unit CubeSat prototype and tested in a vacuum. The prototype, which weighs 2.8 kilograms, or about six pounds, contained electronics and an inertial measurement unit sensor to monitor the performance of the thruster system, which rotates the satellite using short-lived bursts of water vapor.

Typical satellites are about the size of a school bus, weigh thousands of pounds and sometimes cost hundreds of millions of dollars. And while conventional satellites require specialized electronics that can withstand the harsh conditions of space, CubeSats can be built with low-cost, off-the-shelf components. Constellations of many inexpensive, disposable satellites might be launched, minimizing the impact of losing individual satellites.

However, improvements are needed in micropropulsion systems to mobilize and precisely control the satellites.

"There have been substantial improvements made in micropropulsion technologies, but further reductions in mass, volume, and power are necessary for integration with small spacecraft," Alexeenko said.

The FEMTA technology is a micro-electromechanical system, or a MEMS, which are tiny machines that contain components measured on the scale of microns, or millionths of a meter. The thruster demonstrated a thrust-to-power ratio of 230 micronewtons per watt for impulses lasting 80 seconds.

"This is a very low power," Alexeenko said. "We demonstrate that one 180-degree rotation can be performed in less than a minute and requires less than a quarter watt, showing that FEMTA is a viable method for attitude control of CubeSats."

The FEMTA thrusters are microscale nozzles manufactured on silicon wafers using nanofabrication techniques common in industry. The model was tested in Purdue's High Vacuum Facility's large vacuum chamber.

Although the researchers used four thrusters, which allow the satellite to rotate on a single axis, a fully functional satellite would require 12 thrusters for 3-axis rotation.

The team built the system with inexpensive, commercially available devices that are integral for the "internet of things," an emerging phenomenon in which many everyday objects such as appliances and cars have their own internet addresses.

"These undergraduate students integrated all the IOT technologies, which, frankly, they know more about than I do," she said.

The inertial measurement unit handles 10 different types of measurements needed to maneuver and control the satellite. An onboard computer wirelessly receives signals to fire the thruster and transmits motion data using this IMU chip.

"What we really want to do next is integrate our system into a satellite for an actual space mission," she said.

The research involved a collaboration with NASA's Goddard Space Flight Center through the space agency's SmallSat Technology Partnership program, which provided critical funding since the concept inception in 2013.

A patent application for the concept has been filed through the Purdue Research Foundation's Office of Technology Commercialization. The nozzles for the system were fabricated in the Scifres

Nanofabrication Laboratory in the Birck Nanotechnology Center in Purdue's Discovery Park.

###

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Source: Alina Alexeenko, 765-496-1864, alexeenk@purdue.edu

IMAGE CAPTION:

Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats. (Purdue University photo/Erin Easterling)

A publication-quality photo is available at https://news.uns.purdue.edu/images/2017/alexeenko-cubesat.JPG

IMAGE CAPTION:

This tiny engine is part of the new micropropulsion system. (Purdue University photo/Erin Easterling) A publication-quality photo is available at https://news.uns.purdue.edu/images/2017/cubesat-engine.jpg

ABSTRACT

Quad-Thruster FEMTA Micropropulsion System for CubeSat 1-Axis Control

Katherine Fowee, Steven Pugia, Ryan Clay, Matthew Fuehne, Margaret Linker, Anthony Cofer, Alina Alexeenko Purdue University School of Aeronautics & Astronautics, 701 W. Stadium Avenue West Lafayette, IN 47907; (765) 496-1864, kfowee@purdue.edu

The need for compact, low-power micropropulsion systems to increase the maneuverability and lifespan of CubeSats has increased significantly as nanosat missions have become more ubiquitous and complex. The Film- Evaporation MEMS Tunable Array (FEMTA) thruster is a novel micropropulsion technology that exploits thermally controlled microcapillaries to generate micronewton thrust using liquid water as propellant. Here we present the design and testing of four FEMTA thrusters integrated into a 1U CubeSat prototype with the necessary electronics and an inertial measurement unit sensor to monitor the 1U-quad-thruster FEMTA CubeSat Model's attitude. The model was tested in the Purdue University High Vacuum Facility's large vacuum chamber for single-axis control using the FEMTA propulsion system. The experimental data on CubeSat rotation at a slew rate of about 5 deg/sec activated by FEMTA systems with <1 Watt input power show that FEMTA is a viable method for attitude control of CubeSats.

Media Contact

Emil Venere
venere@purdue.edu
765-494-4709

 @PurdueUnivNews

http://www.purdue.edu/ 

Emil Venere | EurekAlert!

Further reports about: CubeSat MEMS capillaries nozzles vacuum water vapor

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>