Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New AFDD prevents smoldering fires in PV systems

02.04.2015

Siemens launches a new arc fault detection device (AFDD) designed for use with photovoltaic systems. The device from the 5SM6 product family detects hazardous arcing faults in the strings of a PV system, and responds with an immediate acoustic and visual alarm. Arcing faults occur in defective string insulation or faulty cables. The result is rapid overheating, which may cause smoldering fires. The AFDD can be combined with other protection and switching devices, e.g. a molded case circuit breaker (MCCB). The device combination will ensure an automatic disconnection of the relevant system part in case of an arcing fault. Siemens has previously been offering AFDDs for electric installations in buildings.

In order to prevent smoldering fires in PV systems, an AFDD permanently measures the intensity and duration of high-frequency noise associated with the voltage and current, as well as noise lapses. Any abnormalities are reported immediately.


The new device from the 5SM6 product family detects hazardous arcing faults in the strings of a PV system.

Once the cause for an arcing fault has been remedied, the AFDD can then be reset. The arcing fault LED will light up again immediately if the problem was not completely resolved or if other arcing faults are occurring. AFDDs can be surface-mounted or clipped onto a standard mounting rail.

The device is therefore easily integrated in new systems and can be retrofitted in existing systems.

Arcing faults are a particularly high risk in solar power systems: On the one hand, the installations are often subject to extreme environmental conditions, including pressure from snow loads or high winds, which can result in damage to the system.

On the other hand, a solar system represents an increased risk for rescue workers in case of fire when attempting to extinguish the fire with water, if no appropriate disconnecting device is installed with the result that the systems are still supplied with voltage.

For further information on Division Energy Management, please see www.siemens.com/energy-management

For further information on AFDD, please see www.siemens.com/afdd


Siemens AG (Berlin and Munich) is a global technology powerhouse that has stood for engineering excellence, innovation, quality, reliability and internationality for more than 165 years. The company is active in more than 200 countries, focusing on the areas of electrification, automation and digitalization. One of the world's largest producers of energy-efficient, resource-saving technologies, Siemens is No. 1 in offshore wind turbine construction, a leading supplier of combined cycle turbines for power generation, a major provider of power transmission solutions and a pioneer in infrastructure solutions as well as automation, drive and software solutions for industry. The company is also a leading provider of medical imaging equipment – such as computed tomography and magnetic resonance imaging systems – and a leader in laboratory diagnostics as well as clinical IT. In fiscal 2014, which ended on September 30, 2014, Siemens generated revenue from continuing operations of €71.9 billion and net income of €5.5 billion. At the end of September 2014, the company had around 343,000 employees worldwide on a continuing basis.

Further information is available on the Internet at www.siemens.com


Reference Number: PR2015040178EMEN


Contact
Mr. Heiko Jahr
Energy Management Division
Siemens AG

Freyeslebenstr. 1

91058 Erlangen

Germany

Tel: +49 (9131) 7295-75

heiko.jahr​@siemens.com

Heiko Jahr | Siemens Energy Management

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>