Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Nanomotor lithography' answers call for affordable, simpler device manufacturing

30.10.2014

What does it take to fabricate electronic and medical devices tinier than a fraction of a human hair?

Nanoengineers at the University of California, San Diego recently invented a new method of lithography in which nanoscale robots swim over the surface of light-sensitive material to create complex surface patterns that form the sensors and electronics components on nanoscale devices.


Nanoengineers have invented a spherical nanorobot made of silica that focuses light like a near-field lens to write surface patterns for nanoscale devices. In this image, the red and purple areas indicate where the light is being magnified to produce a trench pattern on light-sensitive material. The researchers published their novel ‘nanomotor lithography’ method recently in the journal Nature Communications. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.


An atomic force microscope image of a square-wave pattern written by a rod-shaped nanowire robot for nanoscale device manufacturing. Image credit: Laboratory for Nanobioelectronics, UC San Diego Jacobs School of Engineering.

Their research, published recently in the journal Nature Communications, offers a simpler and more affordable alternative to the high cost and complexity of current state-of-the-art nanofabrication methods such as electron beam writing.

Led by distinguished nanoengineering professor and chair Joseph Wang, the team developed nanorobots, or nanomotors, that are chemically-powered, self-propelled and magnetically controlled. Their proof-of-concept study demonstrates the first nanorobot swimmers able to manipulate light for nanoscale surface patterning. The new strategy combines controlled movement with unique light-focusing or light-blocking abilities of nanoscale robots.

“All we need is these self-propelled nanorobots and UV light,” said Jinxing Li, a doctoral student at the Jacobs School of Engineering and first author. “They work together like minions, moving and writing and are easily controlled by a simple magnet.”

State-of-art lithography methods such as electron beam writing are used to define extremely precise surface patterns on substrates used in the manufacture of microelectronics and medical devices. These patterns form the functioning sensors and electronic components such as transistors and switches packed on today’s integrated circuits.

In the mid-20th century the discovery that electronic circuits could be patterned on a small silicon chip, instead of assembling independent components into a much larger “discrete circuit,” revolutionized the electronics industry and set in motion device miniaturization on a scale previously unthinkable.

Today, as scientists invent devices and machines on the nanoscale, there is new interest in developing unconventional nanoscale manufacturing technologies for mass production.

Li was careful to point out that this nanomotor lithography method cannot completely replace the state-of-the-art resolution offered by an e-beam writer, for example. However, the technology provides a framework for autonomous writing of nanopatterns at a fraction of the cost and difficulty of these more complex systems, which is useful for mass production. Wang’s team also demonstrated that several nanorobots can work together to create parallel surface patterns, a task that e-beam writers cannot perform.

The team developed two types of nanorobots: a spherical nanorobot made of silica that focuses the light like a near-field lens, and a rod-shape nanorobot made of metal that blocks the light. Each is self-propelled by the catalytic decomposition of hydrogen peroxide fuel solution. Two types of features are generated: trenches and ridges. When the photoresist surface is exposed to UV light, the spherical nanorobot harnesses and magnifies the light, moving along to create a trench pattern, while the rod-shape nanorobot blocks the light to build a ridge pattern.

“Like microorganisms, our nanorobots can precisely control their speed and spatial motion, and self-organize to achieve collective goals,” said professor Joe Wang. His group’s nanorobots offer great promise for diverse biomedical, environmental and security applications.

UC San Diego is investing heavily in robotics research while leveraging the partnership opportunities afforded by regional industry expertise in supporting fields such as defense and wireless technology, biotech and manufacturing. The Contextual Robotics Technologies International Forum was hosted by the Jacobs School of Engineering, the Qualcomm Institute and the Department of Cognitive Science.

Joe Wang is the director of the Center for Wearable Sensors at UC San Diego Jacobs School of Engineering and holds the SAIC endowed chair in engineering.

Media Contacts

Catherine Hockmuth
Jacobs School of Engineering
Phone: 858-822-1359
chockmuth@ucsd.edu

Catherine Hockmuth | EurekAlert!
Further information:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1591

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>